1
|
Li X, Zhao W, Jin Y, Huang J, Chen D. Phase Behaviors and Photoresponsive Thin Films of Syndiotactic Side-Chain Liquid Crystalline Polymers with High Densely Substituted Azobenzene Mesogens. Chemphyschem 2024; 25:e202400421. [PMID: 38825850 DOI: 10.1002/cphc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Azobenzene-containing polymers (azopolymers) are a kind of fascinating stimuli-responsive materials with broad and versatile applications. In this work, a series of syndiotactic C1 type azopolymers of Pm-Azo-Cn with side-chain azobenzene mesogens of varied length alkoxy tails (n=1, 4, 8, 10) and different length alkyl spacers (m=6, 10) have been prepared via Rh-catalyzed carbene polymerization. The thermal properties and ordered assembly structures of thus synthesized side chain liquid crystalline polymers (SCLCPs) have been systematically investigated with differential scanning calorimetry (DSC), polarized optical microscopy (POM) and variable-temperature small/wide-angle X-ray scattering (SAXS/WAXS) analyses. P10-Azo-C1 and P10-Azo-C4 with shorter alkoxy tails exhibited hierarchical structures SmB/Colob and transformed into SmA/Colob at a higher temperature, while P10-Azo-C8 and P10-Azo-C10 with longer alkoxy tails only displayed side group dominated layered SmB phase and transformed into SmA phase at higher temperatures. For P6-Azo-C4 with a shorter spacer only showed a less ordered SmA phase owing to interference by partly coupling between the side chain azobenzene mesogens and the helical backbone. More importantly, the series high densely substituted syndiotactic C1 azopolymer thin films, exhibited evidently and smoothly reversible photoresponsive properties, which demonstrated promising photoresponsive device applications.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- School of Information Technology, Suzhou Institute of Trade & Commerce, 215009, Suzhou, China
| | - Weiguang Zhao
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Ye Jin
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jianjia Huang
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
2
|
Feng Y, Wei J, Qin L, Yu Y. Three-dimensional liquid crystal polymer actuators assembled by athermal photo-welding. SOFT MATTER 2023; 19:999-1007. [PMID: 36645083 DOI: 10.1039/d2sm01476a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photodeformable liquid crystal polymers (LCPs) exhibit shape changes of different modes like bending, twisting, and oscillation, which depend on the orientation of liquid crystals. However, it is challenging to create a three-dimensional (3D) actuator with distinct actuation modes due to the difficulty of local orientation in a complex bulk architecture. Here we propose a strategy based on athermal photo-welding to integrate different orientations into a single flexible actuator by the photofluidization of azobenzene-containing linear LCPs. Stretch-induced uniaxial films are cut in different directions and subsequently welded via local photofluidization, during which the LCP transitions from a high-modulus glassy state to a rubbery state upon photoisomerization of azobenzene at room temperature. As a consequence, a cucumber vine-like structure with the opposite handedness and a lifting gripper are constructed by such a cut-and-weld process, demonstrating diverse deformation modes of winding, unwinding, and curling. This strategy provides an athermal process for the fabrication of seamless 3D flexible actuators without structural defects, which have potential applications in micromechanical systems, soft robotics, and artificial muscles.
Collapse
Affiliation(s)
- Yaoqing Feng
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jia Wei
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Lang Qin
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yanlei Yu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang 322000, P. R. China
| |
Collapse
|
3
|
Controlling the LCST-Phase Transition in Azobenzene-Functionalized Poly ( N-Isopropylacrlyamide) Hydrogels by Light. Gels 2023; 9:gels9020075. [PMID: 36826244 PMCID: PMC9956105 DOI: 10.3390/gels9020075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Poly(N-isopropylacrylamide) PNIPAAm hydrogels were modified with a new azobenzene-containing co-monomer. In this work, light responsiveness as an additional functionality, is conceptualized to induce two phase transitions in the same material, which can be controlled by light. For a hydrogel with merely 2.5 mol% of this co-monomer, the lower critical solution transition temperature (LCST) was lowered by 12 °C (to 20 °C) compared to PNIPAAm (LCST at 32 °C), as analyzed by differential scanning calorimetry (DSC). The untreated unimodal endotherm split into a bimodal peak upon irradiation with UV-light, giving a second onset due to the switched (Z) isomer-rich regions, LCST*H2.5%-(Z) = 26 °C. On irradiation with 450 nm, leading to the reverse (Z) to (E) isomerization, the endotherm was also reversible. Thus, a photo-switchable hydrogel whose LCST and structure are tunable with the hydrophobicity-hydrophilicity of the (E) and (Z) isomeric state of azobenzene was obtained. The influence of the increase in the mol% of azoacrylate on the LCST was evaluated via DSC, in combination with NMR studies, UV-vis spectroscopy and control experiments with linear polymers. The large light-driven modulation of the LCST adds bistability in thermoresponsive hydrogels, which may open diverse applications in the field of soft robotics actuators.
Collapse
|
4
|
Weng L, Ma M, Yin C, Fei ZX, Yang KK, Ross CA, Shi LY. Synthesis and Self-Assembly of Silicon-Containing Azobenzene Liquid Crystalline Block Copolymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lin Weng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mingchao Ma
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chenxiao Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Xiong Fei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Caroline A. Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ling-Ying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Liang S, Li S, Yuan C, Zhang D, Chen J, Wu S. Polyacrylate Backbone Promotes Photoinduced Reversible Solid-To-Liquid Transitions of Azobenzene-Containing Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Shuxiu Li
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Chenrui Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Dachuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Jiahui Chen
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
6
|
Zhou H, Kuenstler AS, Xu W, Hu M, Hayward RC. A Semicrystalline Poly(azobenzene) Exhibiting Room Temperature Light-Induced Melting, Crystallization, and Alignment. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hantao Zhou
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexa S. Kuenstler
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wenwen Xu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mingqiu Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ryan C. Hayward
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Zhang Z, Xie Z, Nie C, Wu S. Photo-controlled properties and functions of azobenzene-terminated polymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Pessoni L, Siniscalco D, Boussonnière A, Castanet AS, Billon L, Delorme N. Photo-reversible solid to liquid transition of azobenzene containing polymers: impact of the chemical structure and chain length. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Zhao R, Mu J, Bai J, Zhao W, Gong P, Chen L, Zhang N, Shang X, Liu F, Yan S. Smart Responsive Azo-Copolymer with Photoliquefaction for Switchable Adhesive Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16678-16686. [PMID: 35363479 DOI: 10.1021/acsami.2c01556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development and utilization of switchable adhesives are considered to be an essential target to solve the problems of their separation and recycling in some specific service environments, such as the preparation or repair process of electronic devices. Intelligent materials with controllable phase transition are utilized to fabricate switchable adhesives because of the significantly diverse adhesion strengths in different phase states. Photoresponsive azobenzene and its derivatives usually possess different melting temperatures (Tm) or/and glass transition temperatures (Tg) of the cis-trans isomers, which are beneficial to making the photoinduced solid-liquid phase transition for switchable adhesive application possible. Here, a novel three-component azo-copolymer (PNIM-Azo) with fast and reversible photoinduced solid-liquid phase transition has been designed and synthesized. PNIM-Azo possesses reversible bonding/debonding processes, resulting from the different adhesion strengths between trans-configuration PNIM-Azo in the solid state and cis-configuration in the liquid state. Moreover, by incorporating commercialized 2-methoxyethyl acrylate and N-isopropylacrylamide with O and N heteroatoms into the copolymer, the trans-configuration PNIM-Azo possesses the highest adhesion strength (∼11 MPa between two glass substrates) among all of the reported azobenzene-based switchable adhesives, which could be attributed to the increase in the entanglement effect because of the H-bond in the polymer chains formed by introducing heteroatoms. Our synthesized PNIM-Azo copolymer provides an alternative for designing and developing switchable adhesives with high adhesion strength for some electronic production processes.
Collapse
Affiliation(s)
- Ruiyang Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiahui Mu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiayu Bai
- Department of Laboratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110000, P. R. China
| | - Wenpeng Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Piwen Gong
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Longxuan Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Na Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xili Shang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, P. R. China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao 266042, P.R. China
| |
Collapse
|
10
|
Xu X, Wang G. Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107473. [PMID: 35132792 DOI: 10.1002/smll.202107473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Molecular solar thermal (MOST) systems have attracted tremendous attention for solar energy conversion and storage, which can generate high-energy metastable isomers upon capturing photon energy, and release the stored energy as heat on demand during back conversion. However, the pristine molecular photoswitches are limited by low storage energy density and UV light photon energy storage. Recently, numerous pioneering works have been focused on the development of MOST systems towards phase change (PC) and visible light photon energy storage to increase their properties. On the one hand, the strategy of simultaneously capturing isomerization enthalpy and PC energy between solid and liquid can not only offer high latent heat, but also promote the development of sustainable energy systems. On the other hand, the efficient photon energy storage in the visible light range opens a tremendously fascinating avenue to fabricate MOST systems powered under natural sunlight. Here, the recent advances of MOST systems towards PC and visible light photon energy storage are systematically summarized, the most promising advantages and current challenges are analyzed, and emerging strategies and future research directions are proposed.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Sun S, Yuan C, Xie Z, Xu WC, Zhang Q, Wu S. Photoresponsive nanostructures of azobenzene-containing block copolymers at solid surfaces. Polym Chem 2022. [DOI: 10.1039/d1py01452h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An azobenzene-containing block copolymer self-assembled into island-like nanostructures. The island-like nanostructures fused into chain-like nanostructures under UV irradiation based on photoinduced solid-to-liquid transitions at the nanoscale.
Collapse
Affiliation(s)
- Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chenrui Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhulu Xie
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Abstract
Azobenzenes are archetypal molecules that have a central role in fundamental and applied research. Over the course of almost two centuries, the area of azobenzenes has witnessed great achievements; azobenzenes have evolved from simple dyes to 'little engines' and have become ubiquitous in many aspects of our lives, ranging from textiles, cosmetics, food and medicine to energy and photonics. Despite their long history, azobenzenes continue to arouse academic interest, while being intensively produced for industrial purposes, owing to their rich chemistry, versatile and straightforward design, robust photoswitching process and biodegradability. The development of azobenzenes has stimulated the production of new coloured and light-responsive materials with various applications, and their use continues to expand towards new high-tech applications. In this Review, we highlight the latest achievements in the synthesis of red-light-responsive azobenzenes and the emerging application areas of photopharmacology, photoswitchable adhesives and biodegradable materials for drug delivery. We show how the synthetic versatility and adaptive properties of azobenzenes continue to inspire new research directions, with limits imposed only by one's imagination.
Collapse
|
13
|
Shen D, Yao Y, Zhuang Q, Lin S. Mainchain Alternating Azopolymers with Fast Photo-Induced Reversible Transition Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dingfeng Shen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qixin Zhuang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Subramanian V, Martin DC. Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vivek Subramanian
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, The University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Kondo M, Kojima D, Ootsuki N, Kawatsuki N. Photoinduced Exfoliation of a Polymeric
N
‐Benzylideneaniline Liquid‐Crystalline Composite Based on a Photoisomerization‐Triggered Phase Transition. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mizuho Kondo
- Department of Applied Chemistry Graduate School of Engineering University of Hyogo 2167 Shosha Himeji Hyogo 671‐2280 Japan
| | - Daijoro Kojima
- Department of Applied Chemistry Graduate School of Engineering University of Hyogo 2167 Shosha Himeji Hyogo 671‐2280 Japan
| | - Naoya Ootsuki
- Technical Development Department ThreeBond Co., Ltd. Sagamihara 252‐0146 Japan
| | - Nobuhiro Kawatsuki
- Department of Applied Chemistry Graduate School of Engineering University of Hyogo 2167 Shosha Himeji Hyogo 671‐2280 Japan
| |
Collapse
|
16
|
Lei L, Han L, Ma H, Zhang R, Li X, Zhang S, Li C, Bai H, Li Y. Well-Tailored Dynamic Liquid Crystal Networks with Anionically Polymerized Styrene-Butadiene Rubbers toward Modulating Shape Memory and Self-Healing Capacity. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lan Lei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ruixue Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuwen Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Songbo Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chao Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongyuan Bai
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Migulin D, Vysochinskaya Y, Buzin M, Bakirov A, Cherkaev G, Shchegolikhina O. Stereoregular hybrid azobenzene-cyclosiloxanes with photoinduced reversible solid to liquid transition properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Affiliation(s)
- Shuxiu Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zehong Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Minghao Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
19
|
Lin S, Wang F, Du J. High-genus multicompartment vesicles evolved from large compound micelles. Polym Chem 2021. [DOI: 10.1039/d1py00654a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High-genus multicompartment vesicles (HGMVs) are self-assembled from block copolymers containing fluorescent and photo-responsive azobenzene groups.
Collapse
Affiliation(s)
- Sha Lin
- Department of Orthopedics
- Shanghai Tenth People's Hospital
- Tongji University
- Shanghai
- China
| | - Fangyingkai Wang
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- China
| | - Jianzhong Du
- Department of Orthopedics
- Shanghai Tenth People's Hospital
- Tongji University
- Shanghai
- China
| |
Collapse
|
20
|
Xu X, Zhang P, Wu B, Xing Y, Shi K, Fang W, Yu H, Wang G. Photochromic Dendrimers for Photoswitched Solid-To-Liquid Transitions and Solar Thermal Fuels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50135-50142. [PMID: 33085470 DOI: 10.1021/acsami.0c14160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dendrimers are well-defined, highly branched macromolecules that have been widely applied in the fields of catalysis, sensing, and biomedicine. Here, we present a novel multifunctional photochromic dendrimer fabricated through grafting azobenzene units onto dendrimers, which not only enables controlled switching of adhesives and effective repair of coating scratches but also realizes high-performance solar energy storage and on-demand heat release. The switchable adhesives and healable coatings of azobenzene-containing dendrimers are attributed to the reversible solid-to-liquid transitions because trans-isomers and cis-isomers have different glass transition temperatures. The adhesion strengths increase significantly with the increase in dendrimer generations, wherein the adhesion strength of fifth-generation photochromic dendrimers (G5-Azo) can reach up to 1.62 MPa, five times higher than that of pristine azobenzenes. The solar energy storage and heat release of dendrimer solar thermal fuels, the isomers of which possess different chemical energies, can be also enhanced remarkably with the amplification of azobenzene groups on dendrimers. The storage energy density of G5-Azo can reach 59 W h kg-1, which is much higher than that of pristine azobenzenes (36 W h kg-1). The G5-Azo fuels exhibit a 5.2 °C temperature difference between cis-isomers and trans-isomers. These findings provide a new perspective and tremendously attractive avenue for the fabrication of photoswitchable adhesives and coatings and solar thermal fuels with dendrimer structures.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bo Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Youmei Xing
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Ke Shi
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Weihua Fang
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Haifeng Yu
- Department of Materials Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
21
|
Liang SF, Nie C, Yan J, Zhang QJ, Wu S. Photoinduced Reversible Solid-to-Liquid Transitions and Directional Photofluidization of Azobenzene-containing Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2519-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Zhang Z, Chen M, Schneider I, Liu Y, Liang S, Sun S, Koynov K, Butt HJ, Wu S. Long Alkyl Side Chains Simultaneously Improve Mechanical Robustness and Healing Ability of a Photoswitchable Polymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhenlin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Mingsen Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Igor Schneider
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shijie Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
23
|
Lin KT, Chen YJ, Huang MR, Karapala VK, Ho JH, Chen JT. Light-Induced Nanowetting: Erasable and Rewritable Polymer Nanoarrays via Solid-to-Liquid Transitions. NANO LETTERS 2020; 20:5853-5859. [PMID: 32697594 DOI: 10.1021/acs.nanolett.0c01764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Template wetting methods have been widely applied in the preparation of one-dimensional (1D) polymer nanomaterials. The pattern control using the template wetting methods, however, still remains a great challenge, mainly due to the nonselectivity of the polymers toward the environmental triggering. In this work, we present a facile light-induced nanowetting (LIN) method to fabricate patterned nanoarrays using anodic aluminum oxide (AAO) templates. Photoresponsive azobenzene-containing polymers (azopolymers) that exhibit light-induced reversible solid-to-liquid transitions are used. Upon exposure to ultraviolet lights, the azopolymer chains can wet the nanopores of the AAO templates in a liquid state via capillary force. The azopolymer chains are then solidified by illuminating them with visible lights, resulting in the formation of azopolymer nanoarrays. Notably, using designed photomasks, the patterns of the nanoarrays can be ingeniously controlled with the characteristic of erasable and rewritable nanostructures.
Collapse
Affiliation(s)
- Kuan-Ting Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Yu-Jia Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Meng-Ru Huang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | | | - Jhih-Hao Ho
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan 30010
| |
Collapse
|
24
|
Kortekaas L, Simke J, Kurka DW, Ravoo BJ. Rapid Photoswitching of Low Molecular Weight Arylazoisoxazole Adhesives. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32054-32060. [PMID: 32551520 DOI: 10.1021/acsami.0c03767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesion is one of the most ubiquitous practical applications at surfaces. With today's society calling increasingly for more reusable and "green" alternatives, the demand for readily reversible adhesives has triggered many studies into this field, in particular by incorporating molecular photoswitches into composite materials. Responsive polymers can act as reversible adhesives, but their employment brings about synthetic drawbacks and challenges in reproducibility and reusability. Here, our results demonstrate that even a low molecular weight photoswitch can serve as an on-demand adhesive when the intermolecular interactions are sufficiently strong. We show that readily accessible arylazoisoxazoles display a fast photoreversible solid-to-liquid phase transition and perform as excellent photoreversible adhesives, with a remarkable durability over 10 immediate reuse cycles without a loss in adhesive strength or an increase in the unprecedented response time. Furthermore, the versatility of photoreversible adhesion is shown at various surfaces ranging from polymeric materials to metals, demonstrating a wide field of potential application.
Collapse
Affiliation(s)
- Luuk Kortekaas
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Julian Simke
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Dustin W Kurka
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
25
|
Affiliation(s)
- Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
26
|
Xu J, Niu B, Guo S, Zhao X, Li X, Peng J, Deng W, Wu S, Liu Y. Influence of Chromophoric Electron-Donating Groups on Photoinduced Solid-to-Liquid Transitions of Azopolymers. Polymers (Basel) 2020; 12:polym12040901. [PMID: 32294996 PMCID: PMC7240690 DOI: 10.3390/polym12040901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
The photoinduced solid-to-liquid transitions property of azobenzene-containing polymers (azopolymers) enables azopolymers with various promising applications. However, a general lack of knowledge regarding the influence of structure of the azobenzene derivatives on the photoinduced liquefaction hinders the design of novel azopolymers. In the present study, a series of azopolymers with side chains containing azobenzene unit bearing alkyl electron-donating groups were synthesized. The photoisomerization and photoinduced liquefaction properties of newly synthesized azopolymers were investigated. Alkyl-based electron-donating group significantly facilitate the photoisomerization process of azopolymers in solution, as the electron-donating ability of substituents increased, the time required for photoisomerization of azopolymers continually deceased. Meanwhile, the electron-donating group can drastically accelerate photoinduced solid-to-liquid transitions of azopolymers, the liquefaction rate of obtained azopolymers gradually getting quicker as the electron-donating ability of substituents increased. This study clearly demonstrates that the electron-donating group that bearing in the azobenzene group of polymer side chain play an essential role on the photoinduced solid-to-liquid transitions of azopolymers, and hence, gives an insight into how to design novel azopolymers for practical applications.
Collapse
Affiliation(s)
- Jian Xu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.X.); (B.N.); (S.G.); (X.Z.); (X.L.)
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China;
| | - Bin Niu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.X.); (B.N.); (S.G.); (X.Z.); (X.L.)
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China;
| | - Song Guo
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.X.); (B.N.); (S.G.); (X.Z.); (X.L.)
| | - Xiaolei Zhao
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.X.); (B.N.); (S.G.); (X.Z.); (X.L.)
| | - Xiaoli Li
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.X.); (B.N.); (S.G.); (X.Z.); (X.L.)
| | - Jinwen Peng
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.X.); (B.N.); (S.G.); (X.Z.); (X.L.)
| | - Weixing Deng
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.X.); (B.N.); (S.G.); (X.Z.); (X.L.)
- Correspondence: (W.D.); (Y.L.)
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China;
| | - Yuanli Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.X.); (B.N.); (S.G.); (X.Z.); (X.L.)
- Nanning Proberoo Energy Materials Co., Ltd. 41 Jianye Road, Liangqing District, Nanning 530221, China
- Correspondence: (W.D.); (Y.L.)
| |
Collapse
|
27
|
Xu G, Li S, Liu C, Wu S. Photoswitchable Adhesives Using Azobenzene‐Containing Materials. Chem Asian J 2020; 15:547-554. [DOI: 10.1002/asia.201901655] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Guofeng Xu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Shuxiu Li
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Chengwei Liu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| |
Collapse
|
28
|
Ito S, Akiyama H, Mori M, Yoshida M, Kihara H. Semicrystalline poly(vinyl ether)s with high and phototunable glass transition temperature: application for thermally stable and reworkable adhesives. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shotaro Ito
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST Chugoku) 3‐11‐32, Kagamiyama, Higashihiroshima Hiroshima 739‐0046 Japan
| | - Haruhisa Akiyama
- Research Institute for Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1‐1‐1 Higashi, Tsukuba, Ibaraki 305‐8565 Japan
| | - Miyuki Mori
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST Chugoku) 3‐11‐32, Kagamiyama, Higashihiroshima Hiroshima 739‐0046 Japan
| | - Masaru Yoshida
- Research Institute for Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1‐1‐1 Higashi, Tsukuba, Ibaraki 305‐8565 Japan
| | - Hideyuki Kihara
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST Chugoku) 3‐11‐32, Kagamiyama, Higashihiroshima Hiroshima 739‐0046 Japan
| |
Collapse
|
29
|
Wu S, Butt HJ. Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers. Macromol Rapid Commun 2019; 41:e1900413. [PMID: 31737964 DOI: 10.1002/marc.201900413] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/28/2019] [Indexed: 12/31/2022]
Abstract
Photoswitchable compounds are promising materials for solar-thermal energy conversion and storage. In particular, photoresponsive azobenzene-containing compounds are proposed as materials for solar-thermal fuels. In this feature article, solar-thermal fuels based on azobenzene-containing polymers (azopolymers) are reviewed. The mechanism of azopolymer-based solar-thermal fuels is introduced, and computer simulations and experimental results on azopolymer-based solar-thermal fuels are highlighted. Different types of azopolymers such as linear azopolymers, 2D azopolymers, and conjugated azopolymers are addressed. The advantages and limitations of these azopolymers for solar-thermal energy conversion and storage, along with the remaining challenges of azopolymer-based solar-thermal fuels, are discussed.
Collapse
Affiliation(s)
- Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, Anhui, China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 , Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 , Mainz, Germany
| |
Collapse
|