1
|
Meeus EJ, Álvarez M, Koelman E, Pérez PJ, Reek JNH, de Bruin B. Copper-Catalyzed Sulfimidation in Aqueous Media: a Fast, Chemoselective and Biomolecule-Compatible Reaction. Chemistry 2024; 30:e202303939. [PMID: 38116945 DOI: 10.1002/chem.202303939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
Performing transition metal-catalyzed reactions in cells and living systems has equipped scientists with a toolbox to study biological processes and release drugs on demand. Thus far, an impressive scope of reactions has been performed in these settings, but many are yet to be introduced. Nitrene transfer presents a rather unexplored new-to-nature reaction. The reaction products are frequently encountered motifs in pharmaceuticals, presenting opportunities for the controlled, intracellular synthesis of drugs. Hence, we explored the transition metal-catalyzed sulfimidation reaction in water for future in vivo application. Two Cu(I) complexes containing trispyrazolylborate ligands (Tpx ) were selected, and the catalytic system was evaluated with the aid of three fitness factors. The excellent nitrene transfer reactivity and high chemoselectivity of the catalysts, coupled with good biomolecule compatibility, successfully enabled the sulfimidation of thioethers in aqueous media. We envision that this copper-catalyzed sulfimidation reaction could be an interesting starting point to unlock the potential of nitrene transfer catalysis in vivo.
Collapse
Affiliation(s)
- Eva J Meeus
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - María Álvarez
- CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007, Huelva, Spain
| | - Emma Koelman
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Pedro J Pérez
- CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007, Huelva, Spain
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Abbas A, Oswald E, Romer J, Lenzer A, Heiland M, Streb C, Kranz C, Pannwitz A. Initial Quenching Efficiency Determines Light-Driven H 2 Evolution of [Mo 3 S 13 ] 2- in Lipid Bilayers. Chemistry 2023; 29:e202302284. [PMID: 37699127 DOI: 10.1002/chem.202302284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/14/2023]
Abstract
Nature uses reactive components embedded in biological membranes to perform light-driven photosynthesis. Here, a model artificial photosynthetic system for light-driven hydrogen (H2 ) evolution is reported. The system is based on liposomes where amphiphilic ruthenium trisbipyridine based photosensitizer (RuC9 ) and the H2 evolution reaction (HER) catalyst [Mo3 S13 ]2- are embedded in biomimetic phospholipid membranes. When DMPC was used as the main lipid of these light-active liposomes, increased catalytic activity (TONCAT ~200) was observed compared to purely aqueous conditions. Although all tested lipid matrixes, including DMPC, DOPG, DPPC and DOPG liposomes provided similar liposomal structures according to TEM analysis, only DMPC yielded high H2 amounts. In situ scanning electrochemical microscopy (SECM) measurements using Pd microsensors revealed an induction period of around 26 minutes prior to H2 evolution, indicating an activation mechanism which might be induced by the fluid-gel phase transition of DMPC at room temperature. Stern-Volmer-type quenching studies revealed that electron transfer dynamics from the excited state photosensitizer are most efficient in the DMPC lipid environment giving insight for design of artificial photosynthetic systems using lipid bilayer membranes.
Collapse
Affiliation(s)
- Amir Abbas
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Eva Oswald
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jan Romer
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Anja Lenzer
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Magdalena Heiland
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
3
|
Jia Y, Zhang L, Guan W, Lu C. Vesicles as a Multifunctional Microenvironment for Electrochemiluminescence Signal Amplification. Anal Chem 2023; 95:13273-13280. [PMID: 37616465 DOI: 10.1021/acs.analchem.3c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Vesicles as a typical interface-rich microenvironment can promote the reaction rate and the intermediate stability, which are promising for introduction in electrochemiluminescence (ECL) signal amplification. In this work, a kind of multilamellar vesicle obtained from sodium bis(2-ethylhexyl) sulfosuccinate (AOT) was used to modify the electrode surface. The AOT vesicle-modified microenvironment could significantly enhance the ECL performances for the luminol/O2 system in a neutral medium. The mechanism study demonstrated that the nanoscale multilamellar vesicles could maintain the vesicle structure on the electrode surface, which substantially improved the electron transfer and reaction rate, luminescence efficiency of the excited-state 3-aminophthalate anion, and stability of the superoxide anion radical. Alternatively, such a multifunctional microenvironment was also able to enhance the ECL signals from the tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+)/tripropylamine (TPrA) system. Moreover, another dodecyl dimethyl(3-sulfopropyl) ammonium hydroxide inner salt (DSB)-based vesicle was constructed to further verify the versatility of the vesicle-modified microenvironment for ECL signal amplification. Our work not only provides a versatile microenvironment for improving the efficiency of various ECL systems but also offers new insights for the microenvironment construction using the ordered assemblies in ECL fields.
Collapse
Affiliation(s)
- Yunxiu Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Song H, Amati A, Pannwitz A, Bonnet S, Hammarström L. Mechanistic Insights into the Charge Transfer Dynamics of Photocatalytic Water Oxidation at the Lipid Bilayer-Water Interface. J Am Chem Soc 2022; 144:19353-19364. [PMID: 36250745 DOI: 10.1021/jacs.2c06842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem II, the natural water-oxidizing system, is a large protein complex embedded in a phospholipid membrane. A much simpler system for photocatalytic water oxidation consists of liposomes functionalized with amphiphilic ruthenium(II)-tris-bipyridine photosensitizer (PS) and 6,6'-dicarboxylato-2,2'-bipyridine-ruthenium(II) catalysts (Cat) with a water-soluble sacrificial electron acceptor (Na2S2O8). However, the effect of embedding this photocatalytic system in liposome membranes on the mechanism of photocatalytic water oxidation was not well understood. Here, several phenomena have been identified by spectroscopic tools, which explain the drastically different kinetics of water photo-oxidizing liposomes, compared with analogous homogeneous systems. First, the oxidative quenching of photoexcited PS* by S2O82- at the liposome surface occurs solely via static quenching, while dynamic quenching is observed for the homogeneous system. Moreover, the charge separation efficiency after the quenching reaction is much smaller than unity, in contrast to the quantitative generation of PS+ in homogeneous solution. In parallel, the high local concentration of the membrane-bound PS induces self-quenching at 10:1-40:1 molar lipid-PS ratios. Finally, while the hole transfer from PS+ to catalyst is rather fast in homogeneous solution (kobs > 1 × 104 s-1 at [catalyst] > 50 μM), in liposomes at pH = 4, the reaction is rather slow (kobs ≈ 17 s-1 for 5 μM catalyst in 100 μM DMPC lipid). Overall, the better understanding of these productive and unproductive pathways explains what limits the rate of photocatalytic water oxidation in liposomal vs homogeneous systems, which is required for future optimization of light-driven catalysis within self-assembled lipid interfaces.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Chemistry-Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Agnese Amati
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Andrea Pannwitz
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Leif Hammarström
- Department of Chemistry-Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
5
|
Kobayashi A, Takizawa SY, Hirahara M. Photofunctional molecular assembly for artificial photosynthesis: Beyond a simple dye sensitization strategy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Timounay Y, Pannwitz A, Klein DM, Biance AL, Hoefnagel ME, Sen I, Cagna A, Le Merrer M, Bonnet S. Interfacial Characterization of Ruthenium-Based Amphiphilic Photosensitizers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9697-9707. [PMID: 35904352 PMCID: PMC9367009 DOI: 10.1021/acs.langmuir.2c01391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/16/2022] [Indexed: 05/30/2023]
Abstract
Nonreactive surfactant molecules have long been used and characterized for a wide range of applications in industries, life science, and everyday life. Recently, new types of functional amphiphilic molecules have emerged that bear another function, for example, a light-absorbing action, or catalytic properties. However, the surfactant properties of these molecules remain to date essentially unknown. In this context, we investigated here the interfacial activity of photocatalytic surfactants based on a ruthenium(II) tris-bipyridine core, functionalized with two alkyl tails. We realized a systematic characterization of the surfactant properties of these molecules at a water-air interface and studied the effect of the alkyl chain length and of the counterions (hexafluorophosphate or chloride) on these properties. Our data demonstrate that ruthenium surfactants with chloride counteranions form a denser layer at the interface, but their surfactant properties can dramatically deteriorate when the chain length of the alkyl tail increases, leading to simple hydrophobic molecules with poor surfactant properties for the longest chains (C17). These findings pave the way for a better use and understanding of photocatalytic soft interfaces.
Collapse
Affiliation(s)
- Yousra Timounay
- Teclis
Scientific, 22 Ch. Des
Prés Secs, 69380 Civrieux d’Azergues, France
| | - Andrea Pannwitz
- Leiden
University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Universität
Ulm, Institut für Anorganische Chemie I, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - David M. Klein
- Leiden
University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Anne-Laure Biance
- Université
de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Marlene E. Hoefnagel
- Leiden
University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Indraneel Sen
- Wasabi
Innovations Ltd., Sofia
Tech Park Incubator, 111B, Tsarigratsko Shose, Sofia 1784, Bulgaria
| | - Alain Cagna
- Wasabi
Innovations Ltd., Sofia
Tech Park Incubator, 111B, Tsarigratsko Shose, Sofia 1784, Bulgaria
| | - Marie Le Merrer
- Université
de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Sylvestre Bonnet
- Leiden
University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
7
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Hasani M, Kalhor HR. Enzyme-Inspired Lysine-Modified Carbon Quantum Dots Performing Carbonylation Using Urea and a Cascade Reaction for Synthesizing 2-Benzoxazolinone. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Morteza Hasani
- Biochemistry Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Hamid R. Kalhor
- Biochemistry Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| |
Collapse
|
9
|
Keijer T, Bouwens T, Hessels J, Reek JNH. Supramolecular strategies in artificial photosynthesis. Chem Sci 2020; 12:50-70. [PMID: 34168739 PMCID: PMC8179670 DOI: 10.1039/d0sc03715j] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Artificial photosynthesis is a major scientific endeavor aimed at converting solar power into a chemical fuel as a viable approach to sustainable energy production and storage. Photosynthesis requires three fundamental actions performed in order; light harvesting, charge-separation and redox catalysis. These actions span different timescales and require the integration of functional architectures developed in different fields of study. The development of artificial photosynthetic devices is therefore inherently complex and requires an interdisciplinary approach. Supramolecular chemistry has evolved to a mature scientific field in which programmed molecular components form larger functional structures by self-assembly processes. Supramolecular chemistry could provide important tools in preparing, integrating and optimizing artificial photosynthetic devices as it allows precise control over molecular components within such a device. This is illustrated in this perspective by discussing state-of-the-art devices and the current limiting factors - such as recombination and low stability of reactive intermediates - and providing exemplary supramolecular approaches to alleviate some of those problems. Inspiring supramolecular solutions such as those discussed herein will incite expansion of the supramolecular toolbox, which eventually may be needed for the development of applied artificial photosynthesis.
Collapse
Affiliation(s)
- Tom Keijer
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tessel Bouwens
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joeri Hessels
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
10
|
Becker R, Bouwens T, Schippers ECF, van Gelderen T, Hilbers M, Woutersen S, Reek JNH. Photocatalytic Hydrogen Generation by Vesicle-Embedded [FeFe]Hydrogenase Mimics: A Mechanistic Study. Chemistry 2019; 25:13921-13929. [PMID: 31418952 PMCID: PMC6899470 DOI: 10.1002/chem.201902514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 12/22/2022]
Abstract
Artificial photosynthesis—the direct photochemical generation of hydrogen from water—is a promising but scientifically challenging future technology. Because nature employs membranes for photodriven reactions, the aim of this work is to elucidate the effect of membranes on artificial photocatalysis. To do so, a combination of electrochemistry, photocatalysis, and time‐resolved spectroscopy on vesicle‐embedded [FeFe]hydrogenase mimics, driven by a ruthenium tris‐2,2′‐bipyridine photosensitizer, is reported. The membrane effects encountered can be summarized as follows: the presence of vesicles steers the reactivity of the [FeFe]‐benzodithiolate catalyst towards disproportionation, instead of protonation, due to membrane characteristics, such as providing a constant local effective pH, and concentrating and organizing species inside the membrane. The maximum turnover number is limited by photodegradation of the resting state in the catalytic cycle. Understanding these fundamental productive and destructive pathways in complex photochemical systems allows progress towards the development of efficient artificial leaves.
Collapse
Affiliation(s)
- René Becker
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Tessel Bouwens
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Esther C F Schippers
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Toon van Gelderen
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Michiel Hilbers
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Sander Woutersen
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Joost N H Reek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|