Deolka S, Govindarajan R, Khaskin E, Vasylevskyi S, Bahri J, Fayzullin RR, Roy MC, Khusnutdinova JR. Oxygen transfer reactivity mediated by nickel perfluoroalkyl complexes using molecular oxygen as a terminal oxidant.
Chem Sci 2023;
14:7026-7035. [PMID:
37389265 PMCID:
PMC10306096 DOI:
10.1039/d3sc01861j]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel perfluoroethyl and perfluoropropyl complexes supported by naphthyridine-type ligands show drastically different aerobic reactivity from their trifluoromethyl analogs resulting in facile oxygen transfer to perfluoroalkyl groups or oxygenation of external organic substrates (phosphines, sulfides, alkenes and alcohols) using O2 or air as a terminal oxidant. Such mild aerobic oxygenation occurs through the formation of spectroscopically detected transient high-valent NiIII and structurally characterized mixed-valent NiII-NiIV intermediates and radical intermediates, resembling O2 activation reported for some Pd dialkyl complexes. This reactivity is in contrast with the aerobic oxidation of naphthyridine-based Ni(CF3)2 complexes resulting in the formation of a stable NiIII product, which is attributed to the effect of greater steric congestion imposed by longer perfluoroalkyl chains.
Collapse