1
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Sheina ES, Shestakova TS, Deev SL, Khalymbadzha IA, Slepukhin PA, Eltsov OS, Novikov AS, Shevyrin VA, Charushin VN, Chupakhin ON. Mesomeric Betaines Based on Adamantylated 1,2,4-Triazolo[4,3-a]pyrimidin-5-ones: Synthesis, Structure and Conversion into Anionic N-Heterocyclic Carbenes. Chem Asian J 2023; 18:e202201306. [PMID: 36662627 DOI: 10.1002/asia.202201306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The C-N coupling of 1,2,4-triazolo[1,5-a]pyrimidin-7-ones with 1-adamantanol/1-bromoadamantane leads to 1,2,4-triazolo[4,3-a]pyrimidinium-5-olates, which are represented as mesomeric betaines (MBs). The formation of MBs involves not only N-alkylation of heterocyclic framework but also the rearrangement leading to a change in the type of fusion between pyrimidine and 1,2,4-triazole fragments. The structures of the obtained products were confirmed by the X-ray analysis and measurements of 13 C-13 C (JCC ) coupling constants in the 1D 13 C NMR spectra of selectively 13 C-labeled samples. Treatment of the betaines with lithium bis(trimethylsilyl)amide (LiHMDS) gave anionic carbenes, which were detected by 13 C NMR spectroscopy and were trapped by reactions with phenyl isothiocyanate and sulfur. Density functional theory (DFT) and the quantum theory of atoms in molecules (QTAIM) analyses allowed for an insight into the electronic structure of the obtained betaines and N-heterocyclic carbene derivatives.
Collapse
Affiliation(s)
- Ekaterina S Sheina
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| | - Tatyana S Shestakova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| | - Sergey L Deev
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| | - Igor A Khalymbadzha
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.,Postovsky Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russia
| | - Pavel A Slepukhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.,Postovsky Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russia
| | - Oleg S Eltsov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 198504, Russia.,Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow, 117198, Russia
| | - Vadim A Shevyrin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| | - Valery N Charushin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.,Postovsky Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russia
| | - Oleg N Chupakhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.,Postovsky Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russia
| |
Collapse
|
3
|
Chen Y, Lv J, Pan X, Jin Z. An Unexpected Inactivation of N-Heterocyclic Carbene Organic Catalyst by 1-Methylcyclopropylcarbaldehyde and 2,2,2-Trifluoroacetophenone. Front Chem 2022; 10:875286. [PMID: 35402372 PMCID: PMC8988059 DOI: 10.3389/fchem.2022.875286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
An unprecedented inactivation process of the indanol-derived NHC catalysts bearing N-C6F5 groups is reported. An unexpected multi-cyclic complex product is obtained from the 3-component reaction with the 1-methylcyclopropyl-carbaldehyde, the 2,2,2-trifluoroacetophenone and the NHC catalyst. The absolute structure of the inactivation product is unambiguously assigned via X-ray analysis on its single crystals. The formation of the structurally complex product is rationalized through a multi-step cascade cyclization process.
Collapse
|
4
|
Pallova L, Abella L, Jean M, Vanthuyne N, Barthes C, Vendier L, Autschbach J, Crassous J, Bastin S, César V. Helical Chiral N-Heterocyclic Carbene Ligands in Enantioselective Gold Catalysis. Chemistry 2022; 28:e202200166. [PMID: 35143078 DOI: 10.1002/chem.202200166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/29/2022]
Abstract
The first chiral helicene-NHC gold(I) complexes efficient in enantioselective catalysis were prepared. The L-shaped chiral ligand is composed of an imidazo[1,5-a]pyridin-3-ylidene (IPy) scaffold laterally substituted by a configurationally stable [5]-helicenoid unit. The chiral information was introduced in a key post-functionalization step of a NHC-gold(I) complex bearing a symmetrical anionic fluoreno[5]helicene substituent, leading to a racemic mixture of complexes featuring three correlated elements of chirality, namely central, axial and helical chirality. After HPLC enantiomeric resolution, X-ray crystallography and theoretical calculations enabled structural and stereochemical characterization of these configurationally stable NHC-gold(I) complexes. The high potential in asymmetric catalysis is demonstrated in the benchmark cycloisomerization of N-tethered 1,6-enynes with up to 95 : 5 er.
Collapse
Affiliation(s)
- Lenka Pallova
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Laura Abella
- Department of chemistry, University at Buffalo-State University of New York, Buffalo, NY 14260, USA
| | - Marion Jean
- Aix Marseille university, CNRS, Centrale Marseille, Ism2, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille university, CNRS, Centrale Marseille, Ism2, Marseille, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jochen Autschbach
- Department of chemistry, University at Buffalo-State University of New York, Buffalo, NY 14260, USA
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, UMR 6226, Institut de Physique de Rennes, UMR 6251, Campus de Beaulieu CNRS-Université de Rennes 1, 35042, Rennes Cedex, France
| | | | - Vincent César
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|