1
|
Iron-doped Nickel Sulfide Nanoparticles Grown on N-doped Reduced Graphene Oxide as Efficient Electrocatalysts for Oxygen Evolution Reaction. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
2
|
Liu K, Zhu Z, Jiang M, Li L, Ding L, Li M, Sun D, Yang G, Fu G, Tang Y. Boosting Electrocatalytic Oxygen Evolution over Ce-Co 9 S 8 Core-Shell Nanoneedle Arrays by Electronic and Architectural Dual Engineering. Chemistry 2022; 28:e202200664. [PMID: 35384094 DOI: 10.1002/chem.202200664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/24/2023]
Abstract
An dual electronic and architectural engineering strategy is a good way to rationally design earth-abundant and highly efficient electrocatalysts of the oxygen evolution reaction (OER) for sustainable hydrogen-based energy devices. Here, a Ce-doped Co9 S8 core-shell nanoneedle array (Ce-Co9 S8 @CC) supported on a carbon cloth has been designed and developed to accelerate the sluggish kinetics of the OER. Profiting from valance alternative Ce doping, a fine core-shell structure and vertically aligned nanoneedle arrayed architecture, Ce-Co9 S8 @CC integrates modulated electronic structure, highly exposed active sites, and multidimensional mass diffusion channels; together, these afford a favorable catalyzed OER. Ce-Co9 S8 @CC exhibits remarkable performance in the OER in an alkaline medium, where the overpotential requires only 242 mV to deliver a current density of 10 mA cm-2 for the OER; this is 70 mV superior to that of Ce-free Co9 S8 catalyst and other counterparts. Good stability and impressive selectivity (nearly 100 % Faradic efficiency) are also demonstrated. When integrated into a two-electrode OER//HER electrolyzer, the as-prepared Ce-Co9 S8 @CC displays a low operation potential of 1.54 V at 10 mA cm-2 and long-term stability, thus demonstrating great potential for economical water electrolysis.
Collapse
Affiliation(s)
- Kun Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhuoya Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Mengqi Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Liangcheng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Linfei Ding
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210037, P. R. China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Gaixiu Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Abstract
Currently, hydrogen production is based on the reforming process, leading to the emission of pollutants; therefore, a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production, as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g., solar and eolic sources) would facilitate clean energy storage. However, the electrocatalysts currently required for water electrolysis are noble metals, making this potential option expensive and inaccessible for industrial applications. Therefore, there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms, structure, and morphology. Even though some works tend to be contradictory, they have lit up the path for the development of efficient nickel-based electrocatalysts. For these reasons, a review of recent progress is presented herein.
Collapse
|
4
|
Guo D, Kang H, Hao Z, Yang Y, Wei P, Zhang Q, Liu L. Mesoporous cobalt‑iron based materials as highly efficient electrocatalysts for oxygen evolution reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Sun Z, Yuan M, Shi K, Liu Y, Wang D, Nan C, Li H, Sun G, Yang X. Engineering Lithium Ions Embedded in NiFe Layered Double Hydroxide Lattices To Activate Laminated Ni
2+
Sites as High‐Efficiency Oxygen Evolution Reaction Catalysts. Chemistry 2020; 26:7244-7249. [DOI: 10.1002/chem.201905844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/16/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Zemin Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Mengwei Yuan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Kefan Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Yuhui Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Di Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Huifeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Xiaojing Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| |
Collapse
|
6
|
Mukherji A, Bal R, Srivastava R. Understanding the Co : Mo Compositional Modulation and Fe‐Interplay in Multicomponent Sulfide Electrocatalysts for Oxygen and Hydrogen Evolution Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aniruddha Mukherji
- Catalysis Research Laboratory, Department of ChemistryIndian Institute of Technology Ropar Rupnagar- 140001, Punjab India
| | - Rajaram Bal
- Catalytic Conversion and Process DivisionCSIR – Indian Institute of Petroleum Haridwar Road, Mohkampur Dehradun 248005 Uttarakhand India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of ChemistryIndian Institute of Technology Ropar Rupnagar- 140001, Punjab India
| |
Collapse
|