1
|
Hua PP, Bai JH, Feng HJ, Wang JW, Zhang LF, Jin GX. The Topological Transformation of 4 1 Knot to 4 12 Link through Supramolecular Fusion. J Am Chem Soc 2024; 146:26427-26434. [PMID: 39241233 DOI: 10.1021/jacs.4c09385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Realizing topological transformation through supramolecular fusion is particularly challenging, as the self-assembly of disparate components often results in the orthogonal assembly of building blocks into distinct structures rather than the formation of a heteroleptic architecture. This study introduces a topological transformation, transitioning from a figure-eight knot (41 knot) to a Solomon link (412 link) through a supramolecular fusion process. By employing two structurally similar amino acid ligands (L1 and L3) of varying lengths as bridge ligands, we obtained figure-eight knot 1 and a molecular tweezer-like compound 3 when individually complexed with binuclear Cp*Rh acceptor B1. Our results revealed that subtle modifications to bridge ligands can lead to dramatic changes in their structures and recognition properties. Moreover, we successfully achieved the targeted formation of a heteroleptic Solomon link 4 by blending figure-eight knot 1 and compound 3 in a 1:1 ratio without the need for templates. This procedure effortlessly converted the 41 knot into a 412 link, thus marking a significant advancement in the topological transformation. This work not only marks the construction of the first heteroleptic Solomon link comprising two distinct metallamacrocycles but also demonstrates a process of supramolecular fusion-based topological transformation involving three distinct topological structures.
Collapse
Affiliation(s)
- Pan-Pan Hua
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jun-Hua Bai
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Hui-Jun Feng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jun-Wen Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Li-Fang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Zhang NN, Yan Y, Li ZY, Krautscheid H. Semiconductive Potassium Hydroxamate Coordination Polymers with Dual Charge Transport Paths Originating from the π-π Stacking Columns. Inorg Chem 2024; 63:15485-15492. [PMID: 39096283 DOI: 10.1021/acs.inorgchem.4c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Semiconductive coordination polymers (CPs) have recently garnered a significant amount of attention due to their widespread application in many areas. The "through-space" approach has emerged as the most versatile strategy for constructing semiconductive CPs. However, this approach often leads to the formation of unidirectional charge transport paths, resulting in anisotropic electrically conductive performance and low average conductivities in pressed pellets, thus presenting significant challenges for the practical application of semiconductive CPs. Consequently, there is a strong desire to explore simpler and more versatile strategies for designing semiconductive CPs with dual or multiple charge transport paths. Herein, we report on two semiconductive potassium hydroxamate coordination polymers, denoted as [K(HONDI)(H2O)2]n (1) and [K(HONDI)]n (2). Both compounds theoretically possess dual charge transport paths, occurring internally and externally within the π-π stacking columns of the ligands. Conductivity measurements revealed that compounds 1 and 2 both exhibit semiconductive properties, with their electrical conductivities reaching 2.3 × 10-6 and 1.9 × 10-7 S/cm, respectively, at 30 °C. Their electrically conductive performance could be attributed to theoretically biaxial "band-like" charge transport inside crystals and "hopping" charge transport between grain boundaries.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yong Yan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
- Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhen-Yu Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Harald Krautscheid
- Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Shan T, Chen L, Xiao D, Xiao X, Wang J, Chen X, Guo QH, Li G, Stoddart JF, Huang F. Adaptisorption of Nonporous Polymer Crystals. Angew Chem Int Ed Engl 2024; 63:e202317947. [PMID: 38298087 DOI: 10.1002/anie.202317947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Although our knowledge and understanding of adsorptions in natural and artificial systems has increased dramatically during the past century, adsorption associated with nonporous polymers remains something of a mystery, hampering applications. Here we demonstrate a model system for adaptisorption of nonporous polymers, wherein dative B-N bonds and host-guest binding units act as the kinetic and thermodynamic components, respectively. The coupling of these two components enables nonporous polymer crystals to adsorb molecules from solution and undergo recrystallization as thermodynamically favored crystals. Adaptisorption of nonporous polymer crystals not only extends the types of adsorption in which the sorbate molecules are integrated in a precise and orderly manner in the sorbent systems, but also provides a facile and accurate approach to the construction of polymeric materials with precise architectures and integrated functions.
Collapse
Affiliation(s)
- Tianyu Shan
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Liya Chen
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Ding Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xuedong Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiao Wang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xuan Chen
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Qing-Hui Guo
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Guangfeng Li
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - J Fraser Stoddart
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
- Chong Yuet Ming Chemistry Building, The University of Hong Kong, Hong Kong SAR, P. R. China
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East superior Street, Chicago, IL 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feihe Huang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
4
|
Zhang YW, Lu Y, Sun LY, Dutschke PD, Gan MM, Zhang L, Hepp A, Han YF, Hahn FE. Unravelling the Roles of Solvophobic Effects and π⋅⋅⋅π Stacking Interactions in the Formation of [2]Catenanes Featuring Di-(N-Heterocyclic Carbene) Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202312323. [PMID: 37819869 DOI: 10.1002/anie.202312323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
A series of [2]catenanes has been prepared from di-NHC building blocks by utilizing solvophobic effects and/or π⋅⋅⋅π stacking interactions. The dinickel naphthobiscarbene complex syn-[1] and the kinked biphenyl-bridged bipyridyl ligand L2 yield the [2]catenane [2-IL](OTf)4 by self-assembly. Solvophobic effects are pivotal for the formation of the interlocked species. Substitution of the biphenyl-linker in L2 for a pyromellitic diimide group gave ligand L3 , which yielded in combination with syn-[1] the [2]catenane [3-IL](OTf)4 . This assembly exhibits enhanced stability in diluted solution, aided by additional π⋅⋅⋅π stacking interactions. The π⋅⋅⋅π stacking was augmented by the introduction of a pyrene bridge between two NHC donors in ligand L4 . Di-NHC precursor H2 -L4 (PF6 )2 reacts with Ag2 O to give the [Ag2 L4 2 ]2 [2]catenane [4-IL](PF6 )4 , which shows strong π⋅⋅⋅π stacking interactions between the pyrene groups. This assembly was readily converted into the [Au2 L4 2 ]2 gold species [5-IL](PF6 )4 , which exhibits exceptional stability based on the strong π⋅⋅⋅π stacking interactions and the enhanced stability of the Au-CNHC bonds.
Collapse
Affiliation(s)
- Ya-Wen Zhang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ye Lu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
- College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai, China, 200234
| | - Li-Ying Sun
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Patrick D Dutschke
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Ming-Ming Gan
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Le Zhang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Ying-Feng Han
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| |
Collapse
|
5
|
Yan Y, Zhang N, Börner M, Kersting B, Krautscheid H. Hydroxamate based transition metal-organic coordination polymers with semiconductive properties. Dalton Trans 2022; 51:12709-12716. [DOI: 10.1039/d2dt01359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In addtion to carboxylate and N-donor linkers, hydroxamates are a kind of new emerging ligand to form coordination polymers. However, owing to the difficulty in controlling reversible formation of strong...
Collapse
|
6
|
Yan Y, Zhang NN, Tauche LM, Thangavel K, Pöppl A, Krautscheid H. Direct synthesis of a stable radical doped electrically conductive coordination polymer. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
K-ONDI, a directly synthesized coordination polymer, contains NDI˙− radicals that are stable in air and in common organic solvents. Benefiting from π–π interactions and unpaired electrons, K-ONDI exhibits an electrical conductivity of 10−6 S cm−1.
Collapse
Affiliation(s)
- Yong Yan
- Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Ning-Ning Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Lisa Marie Tauche
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraβe 5, 04103 Leipzig, Germany
| | - Kavipriya Thangavel
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraβe 5, 04103 Leipzig, Germany
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraβe 5, 04103 Leipzig, Germany
| | - Harald Krautscheid
- Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Dang LL, Li TT, Cui Z, Sui D, Ma LF, Jin GX. Selective construction and stability studies of a molecular trefoil knot and Solomon link. Dalton Trans 2021; 50:16984-16989. [PMID: 34612256 DOI: 10.1039/d1dt02755g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two novel compounds, a molecular trefoil knot and a Solomon link, were constructed successfully through the cooperation of multiple π-π stacking interactions. A reversible transformation between the trefoil knot and the corresponding [2 + 2] macrocycle could be achieved by solvent- and guest-induced effects. However, the Solomon link maintains its stability in different concentrations, solvents and guest molecules. Single-crystal X-ray crystallographic data, NMR spectroscopic experiments and ESI-MS support the synthesis and structural assignments. These synthesis methods open the door to the further development of smart materials, which will push the advancement of rational design of biomaterials.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Ting-Ting Li
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China. .,College of Chemistry and Bioengineering (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials), Guilin University of Technology, Guilin 541004, P. R. China
| | - Zheng Cui
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| | - Dong Sui
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
8
|
Farwa U, Singh N, Lee J. Self-assembly of supramolecules containing half-sandwich iridium units. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Lu Y, Liu D, Lin YJ, Li ZH, Hahn FE, Jin GX. An "All-in-One" Synthetic Strategy for Linear Metalla[4]Catenanes. J Am Chem Soc 2021; 143:12404-12411. [PMID: 34337934 DOI: 10.1021/jacs.1c06689] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One fascinating and challenging synthetic target in the field of mechanically interlocked molecules is the family of linear [4]catenanes, which are topologically identical to the logo of automobile maker Audi. Herein, we report an "all-in-one" synthetic strategy for the synthesis of linear metalla[n]catenanes (n = 2-4) by the coordination-driven self-assembly of Cp*Rh-based (Cp* = η5-pentamethylcyclopentadienyl) organometallic rectangle π-donors and tetracationic organic cyclophane π-acceptors. We selected the pyrenyl group as the π-donor unit, leading to homogeneous metalla[2]catenanes and cyclic metalla[3]catenanes via π-stacking interactions. By taking advantage of the strong electrostatic interactions between π-donor units and π-acceptor units, a heterogeneous metalla[2]catenanes and linear metalla[3]catenanes, respectively, could be obtained by the simple stirring of homogeneous metalla[2]catenanes with a suitable tetracationic cyclophane. On this basis, this "all-in-one" synthetic strategy was further used to realize a quantitative one-step synthesis of a linear metalla[4]catenanes via the self-assembly of cyclic metalla[3]catenanes and tetracationic cyclophanes. All heterogeneous metalla[n]catenanes (n = 2-4) were fully characterized by single-crystal X-ray analysis, NMR spectroscopy and electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Ye Lu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China.,Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster 48149, Germany
| | - Dong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China
| | - Yue-Jian Lin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China
| | - Zhen-Hua Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster 48149, Germany
| | - Guo-Xin Jin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China
| |
Collapse
|
10
|
Gianga TM, Audibert E, Trandafir A, Kociok-Köhn G, Pantoş GD. Discovery of an all-donor aromatic [2]catenane. Chem Sci 2020; 11:9685-9690. [PMID: 34094233 PMCID: PMC8162110 DOI: 10.1039/d0sc04317f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report herein the first all-donor aromatic [2]catenane formed through dynamic combinatorial chemistry, using single component libraries. The building block is a benzo[1,2-b:4,5-b′]dithiophene derivative, a π-donor molecule, with cysteine appendages that allow for disulfide exchange. The hydrophobic effect plays an essential role in the formation of the all-donor [2]catenane. The design of the building block allows the formation of a quasi-fused pentacyclic core, which enhances the stacking interactions between the cores. The [2]catenane has chiro-optical and fluorescent properties, being also the first known DCC-disulphide-based interlocked molecule to be fluorescent. An all-donor [2]catenane has been synthesised via dynamic combinatorial chemistry. It features stacked benzodithiophenes which are quasi-pentacyclic through hydrogen bonding.![]()
Collapse
Affiliation(s)
| | | | | | - Gabriele Kociok-Köhn
- Materials and Chemical Characterisation Facility (MC2), University of Bath BA2 7AY Bath UK
| | - G Dan Pantoş
- Department of Chemistry, University of Bath BA2 7AY Bath UK
| |
Collapse
|
11
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
12
|
Dang LL, Gao X, Lin YJ, Jin GX. Selective synthesis and structural transformation between a molecular ring-in-ring architecture and an abnormal trefoil knot. Chem Sci 2020; 11:8013-8019. [PMID: 34094170 PMCID: PMC8163296 DOI: 10.1039/d0sc02733b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of complicated supramolecular architectures and the study of their reversible structural transformations remains a fascinating challenge in the field of supramolecular chemistry. Herein, two types of novel coordination compounds, a non-intertwined ring-in-ring assembly and an abnormal trefoil knot were constructed from a strategically selected Cp*Rh building block and a semi-rigid N,N'-bis(4-pyridylmethyl)diphthalic diimide ligand via coordination-driven self-assembly. Remarkably, the reversible transformation between the abnormal trefoil knot and the ring-in-ring assembly or the corresponding tetranuclear macrocycle could be achieved by the synergistic effects of Ag+ ion coordination and alteration of the solvent. Single-crystal X-ray crystallographic data and NMR spectroscopic experiments support the structural assignments.
Collapse
Affiliation(s)
- Li-Long Dang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Xiang Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Yue-Jian Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Guo-Xin Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
13
|
Zhang YW, Bai S, Wang YY, Han YF. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J Am Chem Soc 2020; 142:13614-13621. [DOI: 10.1021/jacs.0c06470] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
14
|
Gao WX, Feng HJ, Guo BB, Lu Y, Jin GX. Coordination-Directed Construction of Molecular Links. Chem Rev 2020; 120:6288-6325. [PMID: 32558562 DOI: 10.1021/acs.chemrev.0c00321] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the emergence of the concept of chemical topology, interlocked molecular assemblies have graduated from academic curiosities and poorly defined species to become synthetic realities. Coordination-directed synthesis provides powerful, diverse, and increasingly sophisticated protocols for accessing interlocked molecules. Originally, metal ions were employed solely as templates to gather and position building blocks in entwined or threaded arrangements. Recently, metal centers have increasingly featured within the backbones of the integral structural elements, which in turn use noncovalent interactions to self-assemble into intricate topologies. By outlining ingenious recent examples as well as seminal classic cases, this Review focuses on the role of metal-ligand paradigms in assembling molecular links. In addition, the ever-evolving approaches to efficient assembly, the structural features of the resulting architectures, and their prospects for the future are also presented.
Collapse
Affiliation(s)
- Wen-Xi Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Ye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
15
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020; 59:13516-13520. [DOI: 10.1002/anie.202004112] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|