1
|
Kikuchi K, Adair LD, Lin J, New EJ, Kaur A. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202204745. [PMID: 36177530 PMCID: PMC10100239 DOI: 10.1002/anie.202204745] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.
Collapse
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jiarun Lin
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Fabre L, Rousset C, Monier K, Da Cruz-Boisson F, Bouvet P, Charreyre MT, Delair T, Fleury E, Favier A. Fluorescent Polymer-AS1411-Aptamer Probe for dSTORM Super-Resolution Imaging of Endogenous Nucleolin. Biomacromolecules 2022; 23:2302-2314. [PMID: 35549176 DOI: 10.1021/acs.biomac.1c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleolin is a multifunctional protein involved in essential biological processes. To precisely localize it and unravel its different roles in cells, fluorescence imaging is a powerful tool, especially super-resolution techniques. Here, we developed polymer-aptamer probes, both small and bright, adapted to direct stochastic optical reconstruction microscopy (dSTORM). Well-defined fluorescent polymer chains bearing fluorophores (AlexaFluor647) and a reactive end group were prepared via RAFT polymerization. The reactive end-group was then used for the oriented conjugation with AS1411, a DNA aptamer that recognizes nucleolin with high affinity. Conjugation via strain-promoted alkyne/azide click chemistry (SPAAC) between dibenzylcyclooctyne-ended fluorescent polymer chains and 3'-azido-functionalized nucleic acids proved to be the most efficient approach. In vitro and in cellulo evaluations demonstrated that selective recognition for nucleolin was retained. Their brightness and small size make these polymer-aptamer probes an appealing alternative to immunofluorescence, especially for super-resolution (10-20 nm) nanoscopy. dSTORM imaging demonstrated the ability of our fluorescent polymer-aptamer probe to provide selective and super-resolved detection of cell surface nucleolin.
Collapse
Affiliation(s)
- Laura Fabre
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Corentin Rousset
- Univ Lyon, Centre Léon Bérard, UMR INSERM 1052 CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon F-69008, France
| | - Karine Monier
- Univ Lyon, Centre Léon Bérard, UMR INSERM 1052 CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon F-69008, France
| | - Fernande Da Cruz-Boisson
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Philippe Bouvet
- Univ Lyon, Centre Léon Bérard, UMR INSERM 1052 CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon F-69008, France
| | - Marie-Thérèse Charreyre
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Thierry Delair
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Etienne Fleury
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Arnaud Favier
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| |
Collapse
|
3
|
Zhang Y, Lu Y, El Sayyed H, Bian J, Lin J, Li X. Transcription factor dynamics in plants: Insights and technologies for in vivo imaging. PLANT PHYSIOLOGY 2022; 189:23-36. [PMID: 35134239 PMCID: PMC9070795 DOI: 10.1093/plphys/kiac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biochemical and genetic approaches have been extensively used to study transcription factor (TF) functions, but their dynamic behaviors and the complex ways in which they regulate transcription in plant cells remain unexplored, particularly behaviors such as translocation and binding to DNA. Recent developments in labeling and imaging techniques provide the necessary sensitivity and resolution to study these behaviors in living cells. In this review, we present an up-to-date portrait of the dynamics and regulation of TFs under physiologically relevant conditions and then summarize recent advances in fluorescent labeling strategies and imaging techniques. We then discuss future prospects and challenges associated with the application of these techniques to examine TFs' intricate dance in living plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hafez El Sayyed
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
4
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
5
|
Estimating the dynamic range of quantitative single-molecule localization microscopy. Biophys J 2021; 120:3901-3910. [PMID: 34437847 DOI: 10.1016/j.bpj.2021.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
In recent years, there have been significant advances in quantifying molecule copy number and protein stoichiometry with single-molecule localization microscopy (SMLM). However, as the density of fluorophores per diffraction-limited spot increases, distinguishing between detection events from different fluorophores becomes progressively more difficult, affecting the accuracy of such measurements. Although essential to the design of quantitative experiments, the dynamic range of SMLM counting techniques has not yet been studied in detail. Here, we provide a working definition of the dynamic range for quantitative SMLM in terms of the relative number of missed localizations or blinks and explore the photophysical and experimental parameters that affect it. We begin with a simple two-state model of blinking fluorophores, then extend the model to incorporate photobleaching and temporal binning by the detection camera. From these models, we first show that our estimates of the dynamic range agree with realistic simulations of the photoswitching. We find that the dynamic range scales inversely with the duty cycle when counting both blinks and localizations. Finally, we validate our theoretical approach on direct stochastic optical reconstruction microscopy (dSTORM) data sets of photoswitching Alexa Fluor 647 dyes. Our results should help guide researchers in designing and implementing SMLM-based molecular counting experiments.
Collapse
|
6
|
Lisovskaya A, Carmichael I, Harriman A. Pulse Radiolysis Investigation of Radicals Derived from Water-Soluble Cyanine Dyes: Implications for Super-resolution Microscopy. J Phys Chem A 2021; 125:5779-5793. [PMID: 34165985 DOI: 10.1021/acs.jpca.1c03776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-induced blinking, an inherent feature of many forms of super-resolution microscopy, has been linked to transient reduction of the fluorescent cyanine dye used as an imaging agent. There is, however, only scant literature information related to one-electron reduced cyanine dyes, especially in an aqueous environment. Here, we examine a small series of cyanine dyes, possessing disparate π-conjugation lengths, under selective reducing or oxidizing conditions. The experiment allows recording of both differential absorption spectra and decay kinetics of the resultant one-electron reduced or oxidized transient species in water. Relative to the ground state, absorption transitions for the various radicals are weak and somewhat broadened but do allow correlation with the π-conjugation length. In all cases, absorption maxima lie to the blue of the main ground-state transition. Under anaerobic conditions, the transient species decay on the microsecond to millisecond time scale, with the mean lifetime depending on molecular structure, radiation dose, and dye concentration. The experimental absorption spectra recorded for the one-electron reduced radicals and the presumed dimer cation radical compare well to spectra obtained from time-dependent density functional theory calculations. The results allow conclusions to be drawn regarding the plausibility of the reduced species being responsible for light-induced blinking in direct stochastic optical reconstruction microscopy.
Collapse
Affiliation(s)
- Alexandra Lisovskaya
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ian Carmichael
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anthony Harriman
- Molecular Photonics Laboratory, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
7
|
Kawai K, Fujitsuka M, Maruyama A. Single-Molecule Study of Redox Reaction Kinetics by Observing Fluorescence Blinking. Acc Chem Res 2021; 54:1001-1010. [PMID: 33539066 DOI: 10.1021/acs.accounts.0c00754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in fluorescence microscopy allow us to track chemical reactions at the single-molecule level. Single-molecule measurements make it possible to minimize the amount of sample needed for analysis and diagnosis. Signal amplification is often applied to ultralow-level biomarker detection. Polymerase chain reaction (PCR) is used to detect DNA/RNA, and enzyme-linked immunosorbent assay (ELISA) can sensitively probe antigen-antibody interactions. While these techniques are brilliant and will continue to be used in the future, single-molecule-level measurements would allow us to reduce the time and cost needed to amplify signals.The kinetics of chemical reactions have been studied mainly using ensemble-averaged methods. However, they can hardly distinguish time-dependent fluctuations and static heterogeneity of the kinetics. The information hidden in ensemble-averaged measurements would be extractable from a single-molecule experiment. Thus, single-molecule measurement would provide unique opportunities to investigate unrevealed phenomena and to elucidate the questions in chemistry, physics, and life sciences. Redox reaction, which is triggered by electron transfer, is among the most fundamental and ubiquitous chemical reactions. The redox reaction of a fluorescent molecule results in the formation of radical ions, which are normally nonemissive. In single-molecule-level measurements, the redox reaction causes the fluctuation of fluorescence signals between the bright ON-state and the dark OFF-state, in a phenomenon called blinking. The duration of the OFF-state (τOFF) corresponds to the lifetime of the radical ion state, and its reaction kinetics can be measured as 1/τOFF. Thus, the kinetics of redox reactions of fluorescent molecules can be accessed at the single-molecule level by monitoring fluorescence blinking. One of the key aspects of single-molecule analysis based on blinking is its robustness. A blinking signal with a certain regular pattern enables single fluorescent molecules to be distinguished and resolved from the random background signal.In this Account, we summarize the recent studies on the single-molecule measurement of redox reaction kinetics, with a focus on our group's recent progress. We first introduce the control of redox blinking to increase the photostability of fluorescent molecules. We then demonstrate the control of redox blinking, which allows us to detect target DNA by monitoring the function of a molecular beacon-type probe, and we investigate antigen-antibody interactions at the single-molecule level. By tracing the time-dependent changes in blinking patterns, redox blinking is shown to be adaptable to tracking the structural switching dynamics of RNA, the preQ1 riboswitch. This Account ends with a discussion of our ongoing work on the control of fluorescent blinking. We also discuss the development of devices that allow single-molecule-level analysis in a high-throughput fashion.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
8
|
Ušaj M, Moretto L, Vemula V, Salhotra A, Månsson A. Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol 2021; 4:64. [PMID: 33441912 PMCID: PMC7806905 DOI: 10.1038/s42003-020-01574-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023] Open
Abstract
Benefits of single molecule studies of biomolecules include the need for minimal amounts of material and the potential to reveal phenomena hidden in ensembles. However, results from recent single molecule studies of fluorescent ATP turnover by myosin are difficult to reconcile with ensemble studies. We found that key reasons are complexities due to dye photophysics and fluorescent contaminants. After eliminating these, through surface cleaning and use of triple state quenchers and redox agents, the distributions of ATP binding dwell times on myosin are best described by 2 to 3 exponential processes, with and without actin, and with and without the inhibitor para-aminoblebbistatin. Two processes are attributable to ATP turnover by myosin and actomyosin respectively, whereas the remaining process (rate constant 0.2–0.5 s−1) is consistent with non-specific ATP binding to myosin, possibly accelerating ATP transport to the active site. Finally, our study of actin-activated myosin ATP turnover without sliding between actin and myosin reveals heterogeneity in the ATP turnover kinetics consistent with models of isometric contraction. With fluorescence based-TIRF microspectroscopy, Ušaj et al. unveil mechanistic details about the ATP turnover rates by myosin and actomyosin with enzymatic reaction pathways that were not possible to obtain from ensemble studies. This study could be important to the field of molecular motors.
Collapse
Affiliation(s)
- Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden.
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Venukumar Vemula
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden.
| |
Collapse
|
9
|
Matikonda SS, Götz R, McLaughlin R, Sauer M, Schnermann MJ. Conformationally restrained pentamethine cyanines and use in reductive single molecule localization microscopy. Methods Enzymol 2020; 641:225-244. [PMID: 32713524 PMCID: PMC10759545 DOI: 10.1016/bs.mie.2020.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pentamethine cyanines are a class of far-red fluorophores that find extensive use in single-molecule localization microscopy (SMLM), as well as a broad range of other techniques. A drawback of this scaffold is its relatively low quantum yields, which is due to excited state deactivation via trans-to-cis chromophore isomerization. Here we describe a synthetic strategy to improve the photon output of these molecules. In the key synthetic transformation, a protected dialdehyde precursor undergoes a cascade reaction that forms a tetracyclic ring system. The resulting conformationally restrained analogs exhibit improved fluorescence quantum yield and extended fluorescence lifetimes. These properties, together with their ability to efficiently recover from hydride reduction, enable a uniquely simple form of single-molecule localization microscopy (SMLM).
Collapse
Affiliation(s)
- Siddharth S Matikonda
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Ralph Götz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| | - Ryan McLaughlin
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States.
| |
Collapse
|
10
|
Kawai K, Maruyama A. Kinetics of Photoinduced Reactions at the Single‐Molecule Level: The KACB Method. Chemistry 2020; 26:7740-7746. [DOI: 10.1002/chem.202000439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Atsushi Maruyama
- Department of Life Science and TechnologyTokyo Institute of Technology 4259 B-57 Nagatsuta Midori-ku, Yokohama, Kanagawa 226-8501 Japan
| |
Collapse
|