1
|
Hu J, Tang M, Wang J, Wu Z, Friedrich A, Marder TB. Photocatalyzed Borylcyclopropanation of Alkenes with a (Diborylmethyl)iodide Reagent. Angew Chem Int Ed Engl 2023; 62:e202305175. [PMID: 37527975 DOI: 10.1002/anie.202305175] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Cyclopropane skeletons play a prominent role in the development of organic synthesis and pharmaceutical chemistry. Herein, we report the design and synthesis of a stable, multifunctional (diborylmethyl)iodide reagent (CHI(Bpin)2 ) for the photoinduced cyclopropanation of alkenes, providing an array of 1,2-substituted cyclopropylboronates in good yields. This α-haloboronic ester can be readily synthesized on a multigram scale from commercially available starting materials. Furthermore, the protocol displays high chemo- and diastereoselectivity, excellent functional-group tolerance, and allows for late-stage borylcyclopropanation of complex molecules. Mechanistic studies reveal that the borylcyclopropanation proceeds through a radical addition/polar cyclization pathway mediated by the photocatalyst fac-Ir(ppy)3 and visible light.
Collapse
Affiliation(s)
- Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Man Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu, China
| | - Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Kumari R, Jha AK, Goyal S, Maan R, Reddy SR, Easwar S. Acyl Transfer-Driven Rauhut-Currier Dimerization of Morita-Baylis-Hillman Ketones. J Org Chem 2023; 88:2023-2033. [PMID: 36753536 DOI: 10.1021/acs.joc.2c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A serendipitous Rauhut-Currier dimerization of 1,1-disubstituted activated olefins derived from Morita-Baylis-Hillman adducts was observed in the presence of DABCO. The reaction is driven by the migration of an acyl group and produces multifunctionalized enol esters in yields greater than 90% in most cases, without necessitating column chromatographic purification. The acyl transfer is thought to proceed via a transition state typical of a Morita-Baylis-Hillman (MBH) reaction, supported by a brief mechanistic study involving computational calculations.
Collapse
Affiliation(s)
- Rajkiran Kumari
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer 305817, Rajasthan, India
| | - Ajit Kumar Jha
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer 305817, Rajasthan, India
| | - Sophiya Goyal
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer 305817, Rajasthan, India
| | - Reena Maan
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer 305817, Rajasthan, India
| | - S Rajagopala Reddy
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer 305817, Rajasthan, India
| | - Srinivasan Easwar
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer 305817, Rajasthan, India
| |
Collapse
|
3
|
Jha AK, Kumari R, Easwar S. Synthesis of 2,2-Disubstituted Dihydro-1,4-benzothiazines from Morita-Baylis-Hillman Ketones by an Oxidative Cyclization. J Org Chem 2022; 87:5760-5772. [PMID: 35441520 DOI: 10.1021/acs.joc.2c00087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An oxidative cyclization ensued upon interaction of Morita-Baylis-Hillman (MBH) ketones with 2-aminothiophenol in the presence of Cs2CO3, resulting in the formation of new 2,2-disubstituted dihydro-1,4-benzothiazines. The reaction features an aza-Michael addition and an oxidative cyclization involving the formation of a carbon-sulfur bond and works well over a wide range of MBH ketones to deliver the dihydrobenzothiazines in good yields in reasonable reaction times under mild conditions.
Collapse
Affiliation(s)
- Ajit Kumar Jha
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Rajkiran Kumari
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Srinivasan Easwar
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
4
|
Meirelles LV, de Castro PP, Passos STA, Carvalho BBPP, Franco CHJ, Correa JR, Neto BAD, Amarante GW. Diverse 3-Methylthio-4-Substituted Maleimides through a Novel Rearrangement Reaction: Synthesis and Selective Cell Imaging. J Org Chem 2022; 87:2809-2820. [PMID: 35108004 DOI: 10.1021/acs.joc.1c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A transition metal-free protocol for the preparation of fluorescent and non-fluoresent 3-methylthio-4-arylmaleimides in a single step through a new rearrangement from thiazolidine-2,4-diones is described. By employing the optimized reaction conditions, a broad scope of derivatives was prepared in ≤97% yield. The reaction tolerated several substituted aryl groups, including the challenging preparation of pyridyl-containing derivatives. A series of control experiments strongly suggested that the new rearrangement involves a key isocyanate intermediate and a further reaction with in situ-generated methylthiomethyl acetate. The photophysical properties of some of the synthesized derivatives as well as their use in live cell imaging were also investigated, revealing that some of the substituted maleimides are capable of selectively staining different regions of the cells.
Collapse
Affiliation(s)
- Luan V Meirelles
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Pedro P de Castro
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Saulo T A Passos
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-900, Brazil
| | - Bernardo B P P Carvalho
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Chris H J Franco
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - José R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-900, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-900, Brazil
| | - Giovanni W Amarante
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
5
|
Batista GMF, de Castro PP, Dos Santos HF, de Oliveira KT, Amarante GW. Electron-Donor–Acceptor Complex-Enabled Flow Methodology for the Hydrotrifluoromethylation of Unsaturated β-Keto Esters. Org Lett 2020; 22:8598-8602. [DOI: 10.1021/acs.orglett.0c03187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gabriel M. F. Batista
- Department of Chemistry, Federal University of Juiz de Fora, Campus Martelos, 36036-900 Juiz de Fora-MG, Brazil
- Department of Chemistry, Federal University of São Carlos, Campus São Carlos, 13565-905 São Carlos-SP, Brazil
| | - Pedro P. de Castro
- Department of Chemistry, Federal University of Juiz de Fora, Campus Martelos, 36036-900 Juiz de Fora-MG, Brazil
| | - Hélio F. Dos Santos
- Department of Chemistry, Federal University of Juiz de Fora, Campus Martelos, 36036-900 Juiz de Fora-MG, Brazil
| | - Kleber T. de Oliveira
- Department of Chemistry, Federal University of São Carlos, Campus São Carlos, 13565-905 São Carlos-SP, Brazil
| | - Giovanni W. Amarante
- Department of Chemistry, Federal University of Juiz de Fora, Campus Martelos, 36036-900 Juiz de Fora-MG, Brazil
| |
Collapse
|