1
|
Li C, Tu L, Xu Y, Li M, Du J, Stang PJ, Sun Y, Sun Y. A NIR-Light-Activated and Lysosomal-Targeted Pt(II) Metallacycle for Highly Potent Evoking of Immunogenic Cell Death that Potentiates Cancer Immunotherapy of Deep-Seated Tumors. Angew Chem Int Ed Engl 2024; 63:e202406392. [PMID: 38775364 DOI: 10.1002/anie.202406392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 07/02/2024]
Abstract
Though platinum (Pt)-based complexes have been recently exploited as immunogenic cell death (ICD) inducers for activating immunotherapy, the effective activation of sufficient immune responses with minimal side effects in deep-seated tumors remains a formidable challenge. Herein, we propose the first example of a near-infrared (NIR) light-activated and lysosomal targeted Pt(II) metallacycle (1) as a supramolecular ICD inducer. 1 synergistically potentiates immunomodulatory response in deep-seated tumors via multiple-regulated approaches, involving NIR light excitation, boosted reactive oxygen species (ROS) generation, good selectivity between normal and tumor cells, and enhanced tumor penetration/retention capabilities. Specifically, 1 has excellent depth-activated ROS production (~7 mm), accompanied by strong anti-diffusion and anti-ROS quenching ability. In vitro experiments demonstrate that 1 exhibits significant cellular uptake and ROS generation in tumor cells as well as respective multicellular tumor spheroids. Based on these advantages, 1 induces a more efficient ICD in an ultralow dose (i.e., 5 μM) compared with the clinical ICD inducer-oxaliplatin (300 μM). In vivo, vaccination experiments further demonstrate that 1 serves as a potent ICD inducer through eliciting CD8+/CD4+ T cell response and Foxp3+ T cell depletion with negligible adverse effects. This study pioneers a promising avenue for safe and effective metal-based ICD agents in immunotherapy.
Collapse
Affiliation(s)
- Chonglu Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| | - Le Tu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| | - Yuling Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| | - Meiqin Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| | - Jiaxing Du
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, 450046, China
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT 84112, USA
| | - Yan Sun
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, 450046, China
| | - Yao Sun
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| |
Collapse
|
2
|
Chen T, Zhao Y, Dang LL, Zhang TT, Lu XL, Chai YH, Lu MY, Aznarez F, Ma LF. Self-Assembly and Photothermal Conversion of MetallaRussian Doll and Metalla[2]catenanes Induced via Multiple Stacking Interactions. J Am Chem Soc 2023; 145:18036-18047. [PMID: 37459092 DOI: 10.1021/jacs.3c05720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A variety of organometallic supramolecular architectures have been constructed over the past decades and their properties were also explored via different strategies. However, the synthesis of metalla-Russian doll is still a fascinating challenge. Herein, a series of new coordination supramolecular complexes, including a metalla-Russian doll, metalla[2]catenanes, and metallarectangles, were synthesized by using meticulously selected Cp*Rh (Cp* = η5-C5Me5) building units (E1, E2, and E3) and three rigid anthracylpyridine ligands (L1, L2, and L3) via a self-assembly strategy. While the combination of the short ligand L1 and E1 or E2 generated two metallarectangles, the longer ligand L2 containing an alkynyl group resulted in two new [2]catenanes, most likely due to which the strong electron-donating effect of alkynyl groups causes self-accumulation. Interestingly, an unusual Russian doll assembly was obtained through the reaction of L3 and E3 based on sextuple π···π stacking interactions. Furthermore, the dynamic structural conversion between [2]catenanes and the corresponding metallarectangles could be observed through concentration-, solvent-, and guest-induced effects. The [2]catenane complexes 4b displayed efficient photothermal conversion efficiency in solution (20.2%), in comparison with other organometallic macrocycles. We believe that π···π stacking interactions generate active nonradiative pathways and promote radiative photodeactivation pathways. This study proves the versatility of half-sandwich building units, not only to build complicated supramolecular topologies but also in effective functional materials for various appealing applications.
Collapse
Affiliation(s)
- Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xiao-Li Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yin-Hang Chai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ming-Yu Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
3
|
Wang F, Shi X, Zhang Y, Zhou W, Li A, Liu Y, Sessler JL, He Q. Reversible Macrocycle-to-Macrocycle Interconversion Driven by Solvent Selection. J Am Chem Soc 2023; 145:10943-10947. [PMID: 37172073 DOI: 10.1021/jacs.3c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Macrocycle-to-macrocycle interconversions are of interest because they can allow access to a variety of structures. However, reversible interconversion between different sized macrocycles remains challenging to control. Herein, we report a facile one-pot synthesis of a series of self-assembled macrocycles from readily prepared α,α'-linked oligopyrrolic dialdehydes and various alkyl diamines. The condensation of pyridine-bridged oligopyrrolic dialdehyde 3 and simple alkyl diamines proved independent of solvent, always yielding the [2 + 2] macrocyclic products. However, when 3 was condensed with 2,2'-oxybis(ethylamine) 14, either ([1 + 1] or [2 + 2]) products are obtained depending on the choice of solvent. Reaction of 3 and 14 in methanol, ethanol, or chloroform gave the [1 + 1] macrocycle as the sole product. In contrast, condensation of 3 and 14 in dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), or acetonitrile (MeCN) yielded the [2 + 2] macrocycle as the major product in the form of a precipitate. Reversible interconversion between the [1 + 1] and [2 + 2] macrocycles could be achieved by tuning the solvent, with the ratio driven by thermodynamic and solubility considerations.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Xiangling Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Yuanchu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
4
|
Lu Y, Dutschke PD, Kinas J, Hepp A, Jin GX, Hahn FE. Organometallic Borromean Rings and [2]Catenanes Featuring Di-NHC Ligands. Angew Chem Int Ed Engl 2023; 62:e202217681. [PMID: 36629746 DOI: 10.1002/anie.202217681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
We report herein a series of organometallic Borromean rings (BRs) and [2]catenanes prepared from benzobiscarbene ligands. The reaction of dinickel complexes of the benzobiscarbenes 1 a-1 c with a thiazolothiazole bridged bipyridyl ligand L2 led by self-assembly to a series of organometallic BRs. Solvophobic effects played a crucial role in the formation and stability of the interlocked species. The stability of BRs is related to the N-alkyl substituents at the precursors 1 a-1 c, where longer alkyl substitutes improve stability and inter-ring interactions. Solvophobic effects are also important for the stability of [2]catenanes prepared from 1 a-1 c and a flexible bipyridyl ligand L3 . In solution, an equilibrium between the [2]catenanes and their macrocyclic building blocks was observed. High proportions of [2]catenanes were obtained in concentrated solutions or polar solvents. The proportion of [2]catenanes in solution could be further enhanced by lengthening of the N-alkyl substitutes.
Collapse
Affiliation(s)
- Ye Lu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Patrick D Dutschke
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Jenny Kinas
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| |
Collapse
|
5
|
Algar JL, Findlay JA, Evans JD, Preston D. A Switchable Palladium(II) Trefoil Entangled Tetrahedron with Temperature Dependence and Concentration Independence. Angew Chem Int Ed Engl 2022; 61:e202210476. [PMID: 35922393 PMCID: PMC9805230 DOI: 10.1002/anie.202210476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Self-assembly makes metallo-interlocked architectures attractive targets, but being in equilibrium with smaller species means that they can suffer from dilution effects. We show that a junctioned system gives rise to a [Pd4 (L)2 ]8+ trefoil entangled tetrahedron irrespective of concentration. Heating the sample reversibly shifts the equilibrium from the knot to an isomeric non-interlocked dual metallo-cycle, demonstrating that thermodynamic equilibria can still be exploited for switching even in the absence of concentration effects.
Collapse
Affiliation(s)
- Jess L. Algar
- Research School of ChemistryAustralian National UniversityCanberraACT 2600Australia
| | - James A. Findlay
- Research School of ChemistryAustralian National UniversityCanberraACT 2600Australia
| | - Jack D. Evans
- Centre for Advanced Nanomaterials and Department of ChemistryThe University of AdelaideAdelaideSA 5000Australia
| | - Dan Preston
- Research School of ChemistryAustralian National UniversityCanberraACT 2600Australia
| |
Collapse
|
6
|
Algar JL, Findlay JA, Evans JD, Preston D. A Switchable Palladium(II) Trefoil Entangled Tetrahedron with Temperature Dependence and Concentration Independence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jess L. Algar
- Australian National University Research School of Chemistry AUSTRALIA
| | - James A. Findlay
- Australian National University Research School of Chemistry AUSTRALIA
| | - Jack D. Evans
- University of Adelaide Department of Chemistry AUSTRALIA
| | - Dan Preston
- Australian National University Research School of Chemistry Building 137Sullivan Creek Road26010Australia 9200 Canberra AUSTRALIA
| |
Collapse
|
7
|
Lei Y, Li Z, Wu G, Zhang L, Tong L, Tong T, Chen Q, Wang L, Ge C, Wei Y, Pan Y, Sue ACH, Wang L, Huang F, Li H. A trefoil knot self-templated through imination in water. Nat Commun 2022; 13:3557. [PMID: 35729153 PMCID: PMC9213439 DOI: 10.1038/s41467-022-31289-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
The preparation of topologically nontrivial molecules is often assisted by covalent, supramolecular or coordinative templates that provide spatial pre-organization for all components. Herein, we report a trefoil knot that can be self-assembled efficiently in water without involving additional templates. The direct condensation of three equivalents of a tetraformyl precursor and six equivalents of a chiral diamine produces successfully a [3 + 6] trefoil knot whose intrinsic handedness is dictated by the stereochemical configuration of the diamine linkers. Contrary to the conventional wisdom that imine condensation is not amenable to use in water, the multivalent cooperativity between all the imine bonds within the framework makes this trefoil knot robust in the aqueous environment. Furthermore, the presence of water is proven to be essential for the trefoil knot formation. A topologically trivial macrocycle composed of two tetraformyl and four diamino building blocks is obtained when a similar reaction is performed in organic media, indicating that hydrophobic effect is a major driving force behind the scene.
Collapse
Affiliation(s)
- Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310027, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Lijie Zhang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, PR China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Tianyi Tong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Lingxiang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310027, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, PR China.
| |
Collapse
|
8
|
Au-Yeung HY, Deng Y. Distinctive features and challenges in catenane chemistry. Chem Sci 2022; 13:3315-3334. [PMID: 35432874 PMCID: PMC8943846 DOI: 10.1039/d1sc05391d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
9
|
Tanabe T, Sato T, Fuku K, Uchida K, Yamauchi T, Takaishi S, Iguchi H. Bluish Hydrochromic Naphthalenediimide Salt: Change of Hydrogen-bond Interactions as the New Mechanism of Vapochromism. CHEM LETT 2021. [DOI: 10.1246/cl.210275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tappei Tanabe
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tetsu Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kentaro Fuku
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tamon Yamauchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
10
|
Non‐Covalent Interaction‐Directed Coordination‐Driven Self‐Assembly of Non‐Trivial Supramolecular Topologies. CHEM REC 2021; 21:574-593. [DOI: 10.1002/tcr.202000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/07/2022]
|
11
|
|
12
|
Dang LL, Feng HJ, Lin YJ, Jin GX. Self-Assembly of Molecular Figure-Eight Knots Induced by Quadruple Stacking Interactions. J Am Chem Soc 2020; 142:18946-18954. [DOI: 10.1021/jacs.0c09162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li-Long Dang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
13
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
14
|
Zhang YW, Bai S, Wang YY, Han YF. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J Am Chem Soc 2020; 142:13614-13621. [DOI: 10.1021/jacs.0c06470] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
15
|
Gao WX, Feng HJ, Guo BB, Lu Y, Jin GX. Coordination-Directed Construction of Molecular Links. Chem Rev 2020; 120:6288-6325. [PMID: 32558562 DOI: 10.1021/acs.chemrev.0c00321] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the emergence of the concept of chemical topology, interlocked molecular assemblies have graduated from academic curiosities and poorly defined species to become synthetic realities. Coordination-directed synthesis provides powerful, diverse, and increasingly sophisticated protocols for accessing interlocked molecules. Originally, metal ions were employed solely as templates to gather and position building blocks in entwined or threaded arrangements. Recently, metal centers have increasingly featured within the backbones of the integral structural elements, which in turn use noncovalent interactions to self-assemble into intricate topologies. By outlining ingenious recent examples as well as seminal classic cases, this Review focuses on the role of metal-ligand paradigms in assembling molecular links. In addition, the ever-evolving approaches to efficient assembly, the structural features of the resulting architectures, and their prospects for the future are also presented.
Collapse
Affiliation(s)
- Wen-Xi Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Ye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
16
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020; 59:13516-13520. [DOI: 10.1002/anie.202004112] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
17
|
Gao X, Guo BB, Dang LL, Jin GX. A template-free strategy for the synthesis of highly stable trefoil knots. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|