1
|
Rex T, Baumert S, Hepp A, Fernández G, Strassert CA. Adaptive photoluminescence through a bioinspired antioxidative mechanism. Chem Sci 2024:d4sc06096b. [PMID: 39479160 PMCID: PMC11515932 DOI: 10.1039/d4sc06096b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Transition metal complexes are archetypal luminescent probes that are widely used for various applications ranging from optoelectronics to biomedicine. However, they face significant challenges such as photobleaching and photooxidative stress, which limit their performance. Herein, we introduce a photosystem-inspired concept based on the use of a vitamin (ascorbic acid, Asc-Ac) to adaptively suppress photobleaching of molecular luminophores. As a proof-of-concept compound, we have selected a new bis-cyclometalated Pt(II) complex (Pt-tBu) and investigated its adaptive photoluminescence resulting from singlet dioxygen (1O2) photoproduction in the presence of Asc-Ac. Interestingly, the excited state quenching and subsequent photobleaching of Pt-tBu in aerated solutions is suppressed by addition of Asc-Ac, which scavenges the 1O2 photosensitized by Pt-tBu upon irradiation and results in an adaptive oxygen depletion with enhancement of luminescence. The adaptation is resilient for successive irradiation cycles with oxygen replenishment, until peroxidation overshooting leads to the degradation of Pt-tBu by formation of a dark Pt(iv) species. The complexity-related adaptation with initial overperformance (luminescence boost) relies on the external energy input and cascaded feedback loops, thus biomimicking inflammation, as the repeated exposure to a stressor leads to a final breakdown. Our antioxidative protection mechanism against photobleaching can be successfully extended to multiple coordination compounds (e.g., Ir(iii), Ru(ii) and Re(i) complexes), thus demonstrating its generality. Our findings broaden the scope of molecular adaptation and pave the way for enhancing the stability of molecular luminophores for multiple applications.
Collapse
Affiliation(s)
- Tobias Rex
- Universität Münster, Institut für Anorganische und Analytische Chemie Corrensstraße 28/30 48149 Münster Germany
- Universität Münster, CeNTech, CiMIC, SoN Heisenbergstraße 11 48149 Münster Germany
| | - Sebastian Baumert
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Alexander Hepp
- Universität Münster, Institut für Anorganische und Analytische Chemie Corrensstraße 28/30 48149 Münster Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Cristian A Strassert
- Universität Münster, Institut für Anorganische und Analytische Chemie Corrensstraße 28/30 48149 Münster Germany
- Universität Münster, CeNTech, CiMIC, SoN Heisenbergstraße 11 48149 Münster Germany
| |
Collapse
|
2
|
Trippmacher S, Demeshko S, Prescimone A, Meyer F, Wenger OS, Wang C. Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion. Chemistry 2024; 30:e202400856. [PMID: 38523568 DOI: 10.1002/chem.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
There has been much progress on mononuclear chromium(III) complexes featuring luminescence and photoredox activity, but dinuclear chromium(III) complexes have remained underexplored in these contexts until now. We identified a tridentate chelate ligand able to accommodate both meridional and facial coordination of chromium(III), to either access a mono- or a dinuclear chromium(III) complex depending on reaction conditions. This chelate ligand causes tetragonally distorted primary coordination spheres around chromium(III) in both complexes, entailing comparatively short excited-state lifetimes in the range of 400 to 800 ns in solution at room temperature and making photoluminescence essentially oxygen insensitive. The two chromium(III) ions in the dimer experience ferromagnetic exchange interactions that result in a high spin (S=3) ground state with a coupling constant of +9.3 cm-1. Photoinduced energy transfer from the luminescent ferromagnetically coupled dimer to an anthracene derivative results in sensitized triplet-triplet annihilation upconversion. Based on these proof-of-principle studies, dinuclear chromium(III) complexes seem attractive for the development of fundamentally new types of photophysics and photochemistry enabled by magnetic exchange interactions.
Collapse
Affiliation(s)
- Simon Trippmacher
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Alessandro Prescimone
- Department of Chemistry, BPR 1096, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Cui Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
3
|
Lemport PS, Petrov VS, Matveev PI, Leksina UM, Roznyatovsky VA, Gloriozov IP, Yatsenko AV, Tafeenko VA, Dorovatovskii PV, Khrustalev VN, Budylin GS, Shirshin EA, Markov VY, Goryunkov AA, Petrov VG, Ustynyuk YA, Nenajdenko VG. First 24-Membered Macrocyclic 1,10-Phenanthroline-2,9-Diamides-An Efficient Switch from Acidic to Alkaline Extraction of f-Elements. Int J Mol Sci 2023; 24:10261. [PMID: 37373410 DOI: 10.3390/ijms241210261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A reaction of acyl chlorides derived from 1,10-phenanthroline-2,9-dicarboxylic acids with piperazine allows the preparation of the corresponding 24-membered macrocycles in good yield. The structural and spectral properties of these new macrocyclic ligands were thoroughly investigated, revealing promising coordination properties towards f-elements (Am, Eu). It was shown that the prepared ligands can be used for selective extraction of Am(III) from alkaline-carbonate media in presence of Eu(III) with an SFAm/Eu up to 40. Their extraction efficiency is higher than calixarene-type extraction of the Am(III) and Eu(III) pair. Composition of macrocycle-metal complex with Eu(III) was investigated by luminescence and UV-vis spectroscopy. The possibility of such ligands to form complexes of L:Eu = 1:2 stoichiometry is revealed.
Collapse
Affiliation(s)
- Pavel S Lemport
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Valentine S Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Uliana M Leksina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Vitaly A Roznyatovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Igor P Gloriozov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Alexandr V Yatsenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Viktor A Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | | | - Viktor N Khrustalev
- Department of Inorganic Chemistry, Peoples' Friendship University of Russia (RUDN University), Moscow 115419, Russia
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Moscow 119991, Russia
| | - Gleb S Budylin
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Evgeny A Shirshin
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vitaliy Yu Markov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Alexey A Goryunkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Yuri A Ustynyuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| | - Valentine G Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow 119991, Russia
| |
Collapse
|
4
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
5
|
Towards Optimized Photoluminescent Copper(I) Phenanthroline-Functionalized Complexes: Control of the Photophysics by Symmetry-Breaking and Spin–Orbit Coupling. MATERIALS 2022; 15:ma15155222. [PMID: 35955157 PMCID: PMC9369739 DOI: 10.3390/ma15155222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
The electronic and structural alterations induced by the functionalization of the 1,10-phenanthroline (phen) ligand in [Cu(I) (phen-R2)2]+ complexes (R=H, CH3, tertio-butyl, alkyl-linkers) and their consequences on the luminescence properties and thermally activated delay fluorescence (TADF) activity are investigated using the density functional theory (DFT) and its time-dependent (TD) extension. It is shown that highly symmetric molecules with several potentially emissive nearly-degenerate conformers are not promising because of low S1/S0 oscillator strengths together with limited or no S1/T1 spin–orbit coupling (SOC). Furthermore, steric hindrance, which prevents the flattening of the complex upon irradiation, is a factor of instability. Alternatively, linking the phenanthroline ligands offers the possibility to block the flattening while maintaining remarkable photophysical properties. We propose here two promising complexes, with appropriate symmetry and enough rigidity to warrant stability in standard solvents. This original study paves the way for the supramolecular design of new emissive devices.
Collapse
|
6
|
Wang C, Kitzmann WR, Weigert F, Förster C, Wang X, Heinze K, Resch-Genger U. Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cui Wang
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics Richard-Willstaetter-Str. 11 12489 Berlin GERMANY
| | - Winald R. Kitzmann
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Florian Weigert
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics GERMANY
| | - Christoph Förster
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Xifan Wang
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics GERMANY
| | - Katja Heinze
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM) Analytische Chemie und Referenzmaterialien Richard-Willstaetter-Str. 11 12489 Berlin GERMANY
| |
Collapse
|
7
|
Rentschler M, Schmid MA, Frey W, Tschierlei S, Karnahl M. Multidentate Phenanthroline Ligands Containing Additional Donor Moieties and Their Resulting Cu(I) and Ru(II) Photosensitizers: A Comparative Study. Inorg Chem 2020; 59:14762-14771. [PMID: 32212646 DOI: 10.1021/acs.inorgchem.9b03687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To bind or not to bind: Driven by the motivation to increase the (photo)stability of traditional Cu(I) photosensitizers, multidentate diimine ligands, which contain two additional donor sites, were designed. To this end, a systematic series of four 1,10-phenanthroline ligands with either OR or SR (R = iPr or Ph) donor groups at the 2 and 9 positions and their resulting hetero- and homoleptic Cu(I) complexes were prepared. In addition, the related Ru(II) complexes were also synthesized to study the effect of another metal center. In the following, a combination of NMR spectroscopy and X-ray analysis was used to evaluate the impact of the additional donor moieties on the coordination behavior. Most remarkably, for the homoleptic bis(diimine)copper(I) complexes, a pentacoordinated copper center, corresponding to a (4 + 1)-fold coordination mode, was found in the solid state. This additional binding is the first indication that the extra donor might also occupy a free coordination site in the excited-state complex, modifying the nature of the excited states and their respective deactivation processes. Therefore, the electrochemical and photophysical properties of all novel complexes (in total 13) were studied in detail to assess the potential of these photosensitizers for future applications within solar energy conversion schemes. Finally, the photostabilities and a potential degradation mechanism were analyzed for representative samples.
Collapse
Affiliation(s)
- Martin Rentschler
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Marie-Ann Schmid
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Brandl T, Kerzig C, Le Pleux L, Prescimone A, Wenger OS, Mayor M. Improved Photostability of a Cu I Complex by Macrocyclization of the Phenanthroline Ligands. Chemistry 2020; 26:3119-3128. [PMID: 31794079 PMCID: PMC7079024 DOI: 10.1002/chem.201904754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/30/2019] [Indexed: 11/12/2022]
Abstract
The development of molecular materials for conversion of solar energy into electricity and fuels is one of the most active research areas, in which the light absorber plays a key role. While copper(I)‐bis(diimine) complexes [CuI(L)2]+ are considered as potent substitutes for [RuII(bpy)3]2+, they exhibit limited structural integrity as ligand loss by substitution can occur. In this article, we present a new concept to stabilize copper bis(phenanthroline) complexes by macrocyclization of the ligands which are preorganized around the CuI ion. Using oxidative Hay acetylene homocoupling conditions, several CuI complexes with varying bridge length were prepared and analyzed. Absorption and emission properties are assessed; rewardingly, the envisioned approach was successful since the flexible 1,4‐butadiyl‐bridged complex does show enhanced MLCT absorption and emission, as well as improved photostability upon irradiation with a blue LED compared to a reference complex.
Collapse
Affiliation(s)
- Thomas Brandl
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Loïc Le Pleux
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.,Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|