1
|
Kimura Y, Matsumura K, Ono K, Tsuchido Y, Kawai H. Recognition of Amino Acid Salts by Temperature-Dependent Allosteric Binding with Stereodynamic Urea Receptors. Chemistry 2024; 30:e202400154. [PMID: 38488291 DOI: 10.1002/chem.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Indexed: 04/11/2024]
Abstract
Positive homotropic artificial allosteric systems are important for the regulation of cooperativity, selectivity and nonlinear amplification. Stereodynamic homotropic allosteric receptors can transmit and amplify induced chirality by the first ligand binding to axial chirality between two chromophores. We herein report stereodynamic allosteric urea receptors consisting of a rotational shaft as the axial chirality unit, terphenyl units as structural transmission sites and four urea units as binding sites. NMR titration experiments revealed that the receptor can bind two carboxylate guests in a positive homotropic allosteric manner attributed to the inactivation by intramolecular hydrogen-bonding between urea units within the receptor. In addition, the VT-CD spectra observed upon binding of the urea receptor with l- or D-amino acid salts in MeCN showed interesting temperature-dependent Cotton effects, based on the differences of the receptor shaft unit and the guest structure. The successful discrimination of hydrocarbon-based side chains of amino acid salts indicated that the input of chiral and steric information for the guest was amplified as outputs of the Cotton effect and the temperature-dependence of VT-CD spectra through cooperativity of positive allosteric binding.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kotaro Matsumura
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kosuke Ono
- School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yoshitaka Tsuchido
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hidetoshi Kawai
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
2
|
Hamada K, Shimoyama D, Hirao T, Haino T. Chiral Supramolecular Polymer Formed via Host-Guest Complexation of an Octaphosphonate Biscavitand and a Chiral Diammonium Guest. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Koki Hamada
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8526
| | - Daisuke Shimoyama
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8526
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8526
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8526
| |
Collapse
|
3
|
Hisano N, Haino T. Host-Guest Complexation of Bisporphyrin Cleft and Electron-Deficient Aromatic Guests. J Org Chem 2022; 87:4001-4009. [PMID: 35085436 DOI: 10.1021/acs.joc.1c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The host-guest complexation of a bisporphyrin cleft with various electron-deficient guest molecules was studied in solution and in the solid-state. X-ray crystal structures of a bisporphyrin cleft with naphthalene dianhydride and 2,4,7-trinitrofluorenone reveal that these guest molecules were located within the bisporphyrin cleft and formed ideal π-π stacking interactions in a host-guest ratio of 1:1. Isothermal titration calorimetry determined the binding constants and thermodynamic parameters for the 1:1 host-guest complexations in 1,2-dichloroethane and toluene. Two types of enthalpy-entropy compensation effects were found: (1) The tightly stacked host-guest structures restrict guest movement within the cleft, which results in significant desolvation with large intrinsic entropies. (2) The loosely bound guests maintain their molecular freedom within the bisporphyrin cleft, which leads to less desolvation with small intrinsic entropies. Chiral guest encapsulation directed the clockwise and anticlockwise twisted conformations of the bisporphyrin units, which induced bisignate CDs.
Collapse
Affiliation(s)
- Naoyuki Hisano
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
4
|
Zhu J, Han Y, Ni Y, Wu S, Zhang Q, Jiao T, Li Z, Wu J. Facile Synthesis of a Fully Fused, Three-Dimensional π-Conjugated Archimedean Cage with Magnetically Shielded Cavity. J Am Chem Soc 2021; 143:14314-14321. [PMID: 34455792 DOI: 10.1021/jacs.1c06490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis of molecular cages consisting of fully fused, π-conjugated rings is rare due to synthetic challenges including preorganization, large strain, and poor solubility. Herein, we report such an example in which a tris-2-aminobenzophenone precursor undergoes acid-mediated self-condensation to form a truncated tetrahedron, one of the 13 Archimedean solids. Formation of eight-membered [1,5]diazocine rings provides preorganization and releases the strain while still maintains weak π-conjugation of the backbone. Thorough characterizations were performed by X-ray, NMR, and UV-vis analysis, assisted by theoretical calculations. The cage exhibits a rigid backbone structure with a well-defined cavity that confines a magnetically shielded environment. The solvent molecule, o-dichlorobenzene, is precisely encapsulated in the cavity at a 1:1 ratio with multiple π···π, C-H···π, and halogen···π interactions with the cage skeleton, implying its template effect for the cage closing reaction. Our synthetic strategy opens the opportunity to access more complex, fully fused, three-dimensional π-conjugated cages.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Yi Han
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Yong Ni
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Qiuyu Zhang
- Department of Chemistry, National University of Singapore, Singapore 117543.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Tianyu Jiao
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Zhengtao Li
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore 117543.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
5
|
Fujimoto H, Shimoyama D, Katayanagi K, Kawata N, Hirao T, Haino T. Negative Cooperativity in Guest Binding of a Ditopic Self-Folding Biscavitand. Org Lett 2021; 23:6217-6221. [PMID: 34232668 DOI: 10.1021/acs.orglett.1c01837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A brand-new self-folding biscavitand was synthesized from a feet-to-feet-connected bisresorcinarene. The X-ray crystal structure of the biscaivtand showed that the two cavities are tightly connected with four butylene linkages. The conformationally coupled two cavities accommodated two cationic guests, showing a homotropic negative cooperativity in nonpolar solvents (toluene and chloroform). A polar tetrahydrofuran solvent weakened the cyclic hydrogen bonding interactions of the biscavitand, which resulted in noncooperative guest binding.
Collapse
Affiliation(s)
- Haruna Fujimoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Daisuke Shimoyama
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Katsuo Katayanagi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Naomi Kawata
- Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takehiro Hirao
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takeharu Haino
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
6
|
Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recognit 2021; 34:e2901. [PMID: 33975380 DOI: 10.1002/jmr.2901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams.
Collapse
Affiliation(s)
- Robert J Falconer
- School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, South Australia, Australia
| | - Boelo Schuur
- Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
7
|
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi Hiroshima 739-8526 Japan
| |
Collapse
|
8
|
Shimoyama D, Sekiya R, Maekawa H, Kudo H, Haino T. One-dimensional arrangement of NORIA in the solid-state. CrystEngComm 2020. [DOI: 10.1039/d0ce00650e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
NORIA is a synthetic macrocycle consisting of twelve resorcinol rings. By cocrystallization of NORIA with benzene, NORIA organized one-dimensional array.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Ryo Sekiya
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Hiroyuki Maekawa
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita-shi
| | - Hiroto Kudo
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita-shi
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
9
|
Shimoyama D, Sekiya R, Haino T. Upper-rim functionalization and supramolecular polymerization of a feet-to-feet-connected biscavitand. Chem Commun (Camb) 2020; 56:3733-3736. [DOI: 10.1039/d0cc00933d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An octaiodobiscavitand was synthesized via an aromatic Finkelstein iodination reaction in good yield. An octa-functionalized biscavitand self-assembled to form a supramolecular polymer in the solid state.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Ryo Sekiya
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
10
|
Shimoyama D, Sekiya R, Haino T. Absorption of chemicals in amorphous trisresorcinarene. Chem Commun (Camb) 2020; 56:12582-12585. [DOI: 10.1039/d0cc05066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trisresorcinarene is an interesting class of macrocyclic host. Its unique structure and insolubility allow to function as a amorphous solid absorbent capable of absorbing various aromatic and aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Ryo Sekiya
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|