1
|
Spiller TE, Donabauer K, Brooks AF, Witek JA, Bowden GD, Scott PJH, Sanford MS. Room-Temperature Photochemical Copper-Mediated Fluorination of Aryl Iodides. Org Lett 2024; 26:6433-6437. [PMID: 39024514 PMCID: PMC11316249 DOI: 10.1021/acs.orglett.4c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
This report describes a method for the photochemical Cu-mediated fluorination of aryl iodides with AgF via putative aryl radical (Ar•) intermediates. It involves irradiating an aryl iodide with UVB light (λmax = 313 nm) in the presence of a mixture of CuI and CuII salts and AgF. Under these conditions, fluorination proceeds at room temperature for substrates containing diverse substituents, including alkoxy and alkyl groups, ketones, esters, sulfonate esters, sulfonamides, and protected amines. This method has been translated to radiofluorination using a combination of K18F, K3PO4, and AgOTf.
Collapse
Affiliation(s)
- Taylor E. Spiller
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| | - Karsten Donabauer
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| | - Allen F. Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jason A. Witek
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| |
Collapse
|
2
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Dong T, Tsui GC. Construction of Carbon-Fluorine Bonds via Copper-Catalyzed/-Mediated Fluorination Reactions. CHEM REC 2021; 21:4015-4031. [PMID: 34618399 DOI: 10.1002/tcr.202100231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023]
Abstract
The construction of carbon-fluorine bonds is an important yet challenging task in organic synthesis. Transition metal-catalyzed/-mediated C-F bond forming processes have recently emerged as a viable strategy and provided access to value-added monofluorinated compounds. A dramatic increase in fluorination methods using inexpensive and earth-abundant copper can be seen in the past decade surpassing those using palladium and silver. This review discusses the recent development of Cu-catalyzed/-mediated formation of C(sp2 )-F and C(sp3 )-F bonds.
Collapse
Affiliation(s)
- Tao Dong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
4
|
|
5
|
Mechanism of Anion-Catalyzed C–H Silylation Using TMSCF3: Kinetically-Controlled CF3-Anionoid Partitioning As a Key Parameter. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Akai S, Saito K, Sato S, Takubo K, Furutsu K, A. B. Mohamed A, Maras Purwati E, Ikawa T, Zhou W. Regio-Complementary Preparation of 6- and 7-Fluoro-1,2,3,4-tetrahydroquinolines via the Cyclization of Catecholamines Followed by Deoxyfluorination. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|