1
|
Talbot FO, Suarez CM, Nagy AM, Chen JC, Djavani-Tabrizi I, Clotea I, Jockusch RA. Robust Fluorescence Collection Module for Wide-Bore Ion Cyclotron Resonance Mass Spectrometers. Anal Chem 2023; 95:17193-17202. [PMID: 37963234 DOI: 10.1021/acs.analchem.3c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Mass spectrometers are at the heart of the most powerful toolboxes available to scientists when studying molecular structure, conformation, and dynamics in controlled molecular environments. Improved molecular characterization brought about by the implementation of new orthogonal methods into mass spectrometry-enabled analyses opens deeper insight into the complex interplay of forces that underlie chemistry. Here, we detail how one can add fluorescence detection to commercial ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers without adverse effects to its preexisting analytical tools. This advance enables measurements based on fluorescence detection, such as Förster resonance energy transfer (FRET), to be used in conjunction with other MS/MS techniques to probe the conformation and dynamics of large biomolecules, such as proteins and their complexes, in the highly controlled environment of a Penning trap.
Collapse
Affiliation(s)
- Francis O Talbot
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Cynthia M Suarez
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Andrea M Nagy
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - JoAnn C Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Iden Djavani-Tabrizi
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ioana Clotea
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
3
|
Hanczyc P, Rajchel-Mieldzioć P, Feng B, Fita P. Identification of Thioflavin T Binding Modes to DNA: A Structure-Specific Molecular Probe for Lasing Applications. J Phys Chem Lett 2021; 12:5436-5442. [PMID: 34080857 PMCID: PMC8280760 DOI: 10.1021/acs.jpclett.1c01254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 05/17/2023]
Abstract
The binding mechanism of thioflavin T (ThT) to DNA was studied using polarized light spectroscopy and fluorescence-based techniques in solutions and in solid films. Linear dichroism measurements showed that ThT binds to DNA duplex by intercalation. Time-resolved fluorescence studies revealed a second binding mode which is the external binding to the DNA phosphate groups. Both binding modes represent the nonspecific type of interactions. The studies were complemented with the analysis of short oligonucleotides having DNA cavities. The results indicate that the interplay between three binding modes-intercalation, external binding, and binding inside DNA cavities-determines the effective fluorescence quantum yield of the dye in the DNA structures. External binding was found to be responsible for fluorescence quenching because of energy transfer between intercalated and externally bound molecules. Finally, amplified spontaneous emission (ASE) was successfully generated in the ThT-stained films and used for detecting different DNA structures. ASE measurements show that ThT-stained DNA structures can be used for designing bioderived microlasers.
Collapse
Affiliation(s)
- P. Hanczyc
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - P. Rajchel-Mieldzioć
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - B. Feng
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - P. Fita
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Tiwari P, Metternich JB, Czar MF, Zenobi R. Breaking the Brightness Barrier: Design and Characterization of a Selected-Ion Fluorescence Measurement Setup with High Optical Detection Efficiency. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:187-197. [PMID: 33236907 DOI: 10.1021/jasms.0c00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A quadrupole ion trap (QIT) mass spectrometer has been modified and coupled with tunable laser excitation and highly sensitive fluorescence detection systems to perform fluorescence studies on mass-selected ions. Gaseous ions, generated using nanoelectrospray ionization (nano-ESI), are trapped in the QIT that allows optical access for laser irradiation. The emitted fluorescence is collected from a 5.0 mm diameter hole drilled into the ring electrode of the QIT and is directed toward the detection setup. Due to the small inner diameter (7.07 mm) of the ring electrode and a relatively large opening for fluorescence collection, a fluorescence collection efficiency of 2.3% is achieved. After some losses in transmission, around 1.8% of the emitted fluorescence reaches the detectors, more than any other similar instrument reported in the literature. This improved fluorescence collection translates to a much shorter measurement time for a fluorescence signal. Another key feature of this setup is the ability to perform a variety of fluorescence experiments on trapped ions including excitation and emission spectroscopy, lifetime measurement, and ion imaging. The capabilities of the instrument are demonstrated by measuring fluorescence spectra of dyes and biomolecules labeled with dyes in a range of different excitation and emission wavelengths, quantum yields, m/z, and different polarities. A fluorescence lifetime measurement and ion image of trapped rhodamine 6G cations are also shown. With a wide array of functionality and high fluorescence detection performance, this setup provides an opportunity to study biomolecular structures and photophysics of fluorophores in well-controlled environments.
Collapse
Affiliation(s)
- Prince Tiwari
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Jonas B Metternich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Martin F Czar
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Jeevan AK, Krishnan SB, Gopidas KR. Structural Deformation to
β
‐Cyclodextrin Due to Strong π‐Stacking in the Self‐Assembly of Inclusion Complex. ChemistrySelect 2020. [DOI: 10.1002/slct.202004488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athira K. Jeevan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| | - Sumesh B. Krishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| | - Karical R. Gopidas
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| |
Collapse
|