1
|
Zheng CC, Gao L, Sun H, Zhao XY, Gao ZQ, Liu J, Guo W. Advancements in enzymatic reaction-mediated microbial transformation. Heliyon 2024; 10:e38187. [PMID: 39430465 PMCID: PMC11489147 DOI: 10.1016/j.heliyon.2024.e38187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Enzymatic reaction-mediated microbial transformation has emerged as a promising technology with significant potential in various industries. These technologies offer the ability to produce enzymes on a large scale, optimize their functionality, and enable sustainable production processes. By utilizing microbial hosts and manipulating their genetic makeup, enzymes can be synthesized efficiently and tailored to meet specific industrial requirements. This leads to enhanced enzyme performance and selectivity, facilitating the development of novel processes and the production of valuable compounds. Moreover, microbial transformation and biosynthesis offer sustainable alternatives to traditional chemical methods, reducing environmental impact and promoting greener production practices. Microbial transformations enrich drug candidate diversity and enhance active ingredient potency, benefiting the pharmaceutical industry. Continued advancements in genetic engineering and bioprocess optimization drive further innovation and application development in Enzymatic reaction-mediated microbial transformation. The integration of AI for predicting enzymatic reactions and optimizing pathways marks a promising direction for future research. In summary, these technologies have the potential to revolutionize several industries by providing cost-effective, sustainable solutions.
Collapse
Affiliation(s)
| | - Liang Gao
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Sun
- Beijing Lu-he Hospital, Capital Medical University, Beijing, China
| | - Xin-Yu Zhao
- Beijing Lu-he Hospital, Capital Medical University, Beijing, China
| | - Zhu-qing Gao
- Beijing Ji-shui-tan Hospital, Capital Medical University, Beijing, China
| | - Jie Liu
- The affiliated Jiang-ning Hospital of Nanjing Medical University, Jiangsu, China
| | - Wei Guo
- Aviation General Hospital, Beijing, 100012, China
| |
Collapse
|
2
|
Noori Z, Malekzadeh A, Poater J. Brownmillerite Calcium Ferrite, a Promising Perovskite-Related Material in the Degradation of a Tight Dye under Ambient Conditions. ChemistryOpen 2024; 13:e202300169. [PMID: 38051941 PMCID: PMC10962484 DOI: 10.1002/open.202300169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
Evaluation of effective and low-cost materials as catalysts to combat the threat of pollution is a significant and growing trend. With this aim, we have synthesized calcium ferrite brownmillerite by wet preparation approach as a catalyst for pollution. The structural analysis is established by the X-ray diffraction of Ca2 Fe2 O5 , whereas the tetrahedral and octahedral sites band stretching for ferrite specimen has been deduced using FTIR. The bandgap energy has been estimated by the Tauc relation (2.17 eV). Ca2 Fe2 O5 brownmillerite exhibits a BET surface area of 10 m2 /g and a BJH pore volume of 0.121 cm3 /g with the average particle size of 70 nm. Importantly, the alizarin Red S dye degradation has been studied using the prepared ferrite catalyst, under dark ambient conditions and without the presence of any acidic or basic additives. Degradation is also supported by both FTIR and TOC analysis. Surface properties of brownmillerite Ca2 Fe2 O5 have been characterized using electronic spectroscopy and CO2 temperature programmed desorption (TPD) analysis and revealed that the basic surface of brownmillerite Ca2 Fe2 O5 offers active sites that are suitable for degradation processes. All results show that the preparation of brownmillerite Ca2 Fe2 O5 via the Pechini method is suitable to produce fine surfaces and pores with nanosized particles.
Collapse
Affiliation(s)
- Zahra Noori
- School of ChemistryDamghan UniversityDamghan367126/41167Iran
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de BarcelonaMartí i Franquès 1–1108028BarcelonaSpain
| | - Azim Malekzadeh
- School of ChemistryDamghan UniversityDamghan367126/41167Iran
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de BarcelonaMartí i Franquès 1–1108028BarcelonaSpain
- ICREAPasseig Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
3
|
Lambert F, Danten Y, Gatti C, Bocquet B, Franco AA, Frayret C. Carbonyl-Based Redox-Active Compounds as Organic Electrodes for Batteries: Escape from Middle-High Redox Potentials and Further Improvement? J Phys Chem A 2023. [PMID: 37285603 DOI: 10.1021/acs.jpca.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extracting─from the vast space of organic compounds─the best electrode candidates for achieving energy material breakthrough requires the identification of the microscopic causes and origins of various macroscopic features, including notably electrochemical and conduction properties. As a first guess of their capabilities, molecular DFT calculations and quantum theory of atoms in molecules (QTAIM)-derived indicators were applied to explore the family of pyrano[3,2-b]pyran-2,6-dione (PPD, i.e., A0) compounds, expanded to A0 fused with various kinds of rings (benzene, fluorinated benzene, thiophene, and merged thiophene/benzene). A glimpse of up-to-now elusive key incidences of introducing oxygen in vicinity to the carbonyl redox center within 6MRs─as embedded in the A0 core central unit common to all A-type compounds─has been gained. Furthermore, the main driving force toward achieving modulated low redox potential/band gaps thanks to fusing the aromatic rings for the A compound series was discovered.
Collapse
Affiliation(s)
- Fanny Lambert
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314; Hub de l'Energie; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 15 Rue Baudelocque, 80000 Amiens Cedex, France
- The French Environment and Energy Management Agency (ADEME), 20 Avenue du Grésillé-BP 90406, 49004 Angers Cedex 01, France
| | - Yann Danten
- Institut des Sciences Moléculaires, UMR CNRS 5255, 351 Cours de la Libération, 33405 Talence, France
| | - Carlo Gatti
- CNR SCITEC, CNR Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Sede Via C. Golgi, 19, 20133 Milano, Italy
| | - Bryan Bocquet
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314; Hub de l'Energie; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 15 Rue Baudelocque, 80000 Amiens Cedex, France
| | - Alejandro A Franco
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314; Hub de l'Energie; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 15 Rue Baudelocque, 80000 Amiens Cedex, France
- ALISTORE-European Research Institute, Hub de l'Energie, FR CNRS 3104, 15 rue Baudelocque, 80039 Amiens, France
- Institut Universitaire de France, 103 boulevard Saint Michel, Paris 75005, France
| | - Christine Frayret
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314; Hub de l'Energie; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 15 Rue Baudelocque, 80000 Amiens Cedex, France
- ALISTORE-European Research Institute, Hub de l'Energie, FR CNRS 3104, 15 rue Baudelocque, 80039 Amiens, France
| |
Collapse
|
4
|
Zhang L, Chu C, Lin X, Sun R, Li Z, Chen S, Liu Y, Wu J, Yu Z, Liu X. Tunable Nanoparticles with Aggregation-Induced Emission Heater for Precise Synergistic Photothermal and Thermodynamic Oral Cancer Therapy of Patient-Derived Tumor Xenograft. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205780. [PMID: 37078783 PMCID: PMC10265040 DOI: 10.1002/advs.202205780] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/12/2023] [Indexed: 05/03/2023]
Abstract
The fluorophores in the second near-infrared (NIR-II) biological window (1000 - 1700 nm) show great application prospects in the fields of biology and optical communications. However, both excellent radiative transition and nonradiative transition cannot be achieved simultaneously for the majority of traditional fluorophores. Herein, tunable nanoparticles formulated with aggregation-induced emission (AIE) heater are developed rationally. The system can be implemented via the development of an ideal synergistic system that can not only produce photothermal from nonspecific triggers but also trigger carbon radical release. Once accumulating in tumors and subsequently being irradiated with 808 nm laser, the nanoparticles (NMB@NPs) encapsulated with NMDPA-MT-BBTD (NMB) are splitted due to the photothermal effect of NMB, leading to the decomposition of azo bonds in the nanoparticle matrix to generate carbon radical. Accompanied by second near-infrared (NIR-II) window emission from the NMB, fluorescence image-guided thermodynamic therapy (TDT) and photothermal therapy (PTT) which significantly inhibited the growth of oral cancer and negligible systemic toxicity is achieved synergistically. Taken together, this AIE luminogens-based synergistic photothermal-thermodynamic strategy brings a new insight into the design of superior versatile fluorescent NPs for precise biomedical applications and holds great promise to enhance the therapeutic efficacy of cancer therapy.
Collapse
Affiliation(s)
- Leitao Zhang
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Chengyan Chu
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjing210023China
| | - Xuefeng Lin
- Pingshan District People's Hospital of ShenzhenPingshan General Hospital of Southern Medical UniversityShenzhenGuangdong518118China
| | - Rui Sun
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Zibo Li
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Sijia Chen
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yinqiao Liu
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jian Wu
- Center of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong Province510080China
| | - Zhiqiang Yu
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
5
|
Lin J, Wang S, Zhang F, Yang B, Du P, Chen C, Zang Y, Zhu D. Highly efficient charge transport across carbon nanobelts. SCIENCE ADVANCES 2022; 8:eade4692. [PMID: 36563157 PMCID: PMC9788781 DOI: 10.1126/sciadv.ade4692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Carbon nanobelts (CNBs) are a new form of nanocarbon that has promising applications in optoelectronics due to their unique belt-shaped π-conjugated systems. Recent synthetic breakthrough has led to the access to various CNBs, but their optoelectronic properties have not been explored yet. In this work, we study the electronic transport performance of a series of CNBs by incorporating them into molecular devices using the scanning tunneling microscope break junction technique. We show that, by tuning the bridging groups between the adjacent benzenes in the CNBs, we can achieve remarkably high conductance close to 0.1 G0, nearly one order of magnitude higher than their nanoring counterpart cycloparaphenylene. Density functional theory-based calculations further elucidate the crucial role of the structural distortion played in facilitating the unique radial π-electron delocalization and charge transport across the belt-shaped carbon skeletons. These results develop a basic understanding of electronic transport properties of CNBs and lay the foundation for further exploration of CNB-based optoelectronic applications.
Collapse
Affiliation(s)
- Junfeng Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengda Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pingwu Du
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chuanfeng Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Zang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Yu L, Shi M, Wang Z, Xing X, Umair Ali M, He Y, Meng H. Tuning the UV/Vis Absorption Spectra of Electrochromic Small Molecular Radicals Through Bridge Modulation. Chemphyschem 2021; 22:1684-1691. [PMID: 34164904 DOI: 10.1002/cphc.202100369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Indexed: 02/02/2023]
Abstract
Studies on the optical properties of donor-bridge-acceptor (DBA) materials in their radical anion state are rare but important. Such investigations can help to extend the application of DBA materials to opto-electrochemical devices and no longer limit them to optical physics research. In this work, a series of new DBA materials, TACzs, for overcoming this limitation are reported. All TACzs show strong intramolecular charge transfer (ICT) in their photoexcited states, leading to noticeable solvatochromism. Besides, the electronic structures of their radical anions show great variability, displaying different absorption spectra and diverse colors. Moreover, the potential application of TACzs as electrochromic and electro-fluorochromic materials are discussed. This work demonstrates that manipulating the π bridge between the donor and acceptor in the DBA system is an effective pathway not only to tailor the ICT properties of materials in their neutral state, but also to tune the absorption characteristics of their radical anion state, which makes them very promising for applications in electroluminescent and electrochemical devices.
Collapse
Affiliation(s)
- Lirong Yu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ming Shi
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Xing Xing
- Research & Development Institute of Northwestern Polytechnical University (Shenzhen), Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Muhammad Umair Ali
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yaowu He
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
7
|
Pigot C, Noirbent G, Brunel D, Dumur F. Recent advances on push–pull organic dyes as visible light photoinitiators of polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109797] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Narsaria AK, Poater J, Fonseca Guerra C, Ehlers AW, Hamlin TA, Lammertsma K, Bickelhaupt FM. Distortion-Controlled Redshift of Organic Dye Molecules. Chemistry 2020; 26:2080-2093. [PMID: 31815315 PMCID: PMC7027851 DOI: 10.1002/chem.201905355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/31/2022]
Abstract
It is shown, quantum chemically, how structural distortion of an aromatic dye molecule can be leveraged to rationally tune its optoelectronic properties. By using a quantitative Kohn-Sham molecular orbital (KS-MO) approach, in combination with time-dependent DFT (TD-DFT), the influence of various structural and electronic tuning parameters on the HOMO-LUMO gap of a benzenoid model dye have been investigated. These parameters include 1) out-of-plane bending of the aromatic core, 2) bending of the bridge with respect to the core, 3) the nature of the bridge itself, and 4) π-π stacking. The study reveals the coupling of multiple structural distortions as a function of bridge length and number of bridges in benzene to be chiefly responsible for a decreased HOMO-LUMO gap, and consequently, red-shifting of the absorption wavelength associated with the lowest singlet excitation (λ≈560 nm) in the model cyclophane systems. These physical insights together with a rational approach for tuning the oscillator strength were leveraged for the proof-of-concept design of an intense near-infrared (NIR) absorbing cyclophane dye at λ=785 nm. This design may contribute to a new class of distortion-controlled NIR absorbing organic dye molecules.
Collapse
Affiliation(s)
- Ayush K. Narsaria
- Department of Theoretical Chemistry and Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Jordi Poater
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de BarcelonaMartí i Franquès 1-1108028BarcelonaSpain
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Gorlaeus LaboratoriesLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Andreas W. Ehlers
- van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
- Department of ChemistryUniversity of JohannesburgAuckland ParkJohannesburg2006South Africa
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Koop Lammertsma
- Department of Theoretical Chemistry and Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Department of ChemistryUniversity of JohannesburgAuckland ParkJohannesburg2006South Africa
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute of Molecules and Materials (IMM)Radboud University NijmegenHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|