1
|
Sager E, Tzvetkova P, Lingel A, Gossert AD, Luy B. Hydrogen bond formation may enhance RDC-based discrimination of enantiomers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:639-647. [PMID: 38785031 DOI: 10.1002/mrc.5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
The distinction of enantiomers based on residual anisotropic parameters obtained by alignment in chiral poly-γ-benzyl-L-glutamate (PBLG) is among the strongest in high-resolution NMR spectroscopy. However, large variations in enantiodifferentiation among different solutes are frequently observed. One hypothesis is that the formation of hydrogen bonds between solute and PBLG is important for the distinction of enantiomers. With a small set of three almost spherical enantiomeric pairs, for which 1DCH residual dipolar couplings are measured, we address this issue in a systematic way: borneol contains a single functional group that can act as a hydrogen bond donor, camphor has a single group that may act as a hydrogen bond acceptor, and quinuclidinol can act as both hydrogen bond donor and acceptor. The results are unambiguous: although camphor shows low enantiodifferentiation with PBLG and alignment that can be predicted well by the purely steric TRAMITE approach, the distinction of enantiomers for the other enantiomeric pairs is significantly higher with alignment properties that must involve a specific interaction in addition to steric alignment.
Collapse
Affiliation(s)
- Emine Sager
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Novartis Biomedical Research, Basel, Switzerland
| | - Pavleta Tzvetkova
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | | | | | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Tichotová M, Landovský T, Lang J, Jeziorowski S, Schmidts V, Kohout M, Babor M, Lhoták P, Thiele CM, Dvořáková H. Enantiodiscrimination of Inherently Chiral Thiacalixarenes by Residual Dipolar Couplings. J Org Chem 2024; 89:9711-9720. [PMID: 36655948 PMCID: PMC11267606 DOI: 10.1021/acs.joc.2c02594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 01/20/2023]
Abstract
Inherently chiral compounds, such as calixarenes, are chiral due to a nonplanar three-dimensional (3D) structure. Determining their conformation is essential to understand their properties, with nuclear magnetic resonance (NMR) spectroscopy being one applicable method. Using alignment media to measure residual dipolar couplings (RDCs) to obtain structural information is advantageous when classical NMR parameters like the nuclear Overhauser effect (NOE) or J-couplings fail. Besides providing more accurate structural information, the alignment media can induce different orientations of enantiomers. In this study, we examined the ability of polyglutamates with different side-chain moieties─poly-γ-benzyl-l-glutamate (PBLG) and poly-γ-p-biphenylmethyl-l-glutamate (PBPMLG) ─to enantiodifferentiate the inherently chiral phenoxathiin-based thiacalix[4]arenes. Both media, in combination with two solvents, allowed for enantiodiscrimination, which was, to the best of our knowledge, proved for the first time on inherently chiral compounds. Moreover, using the experimental RDCs, we investigated the calix[4]arenes conformational preferences in solution, quantitatively analyzed the differences in the alignment of the enantiomers, and discussed the pitfalls of the use of the RDC analysis.
Collapse
Affiliation(s)
- Markéta Tichotová
- Laboratory
of NMR Spectroscopy, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
- Department
of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 00Prague 2, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo náměstí 542, 160 00Prague 6, Czech Republic
| | - Tomáš Landovský
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| | - Jan Lang
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16Prague 2, Czech Republic
| | - Sharon Jeziorowski
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 16, 64287Darmstadt, Germany
| | - Volker Schmidts
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 16, 64287Darmstadt, Germany
| | - Michal Kohout
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| | - Martin Babor
- Department
of Solid State Chemistry, University of
Chemistry and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| | - Pavel Lhoták
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| | - Christina M. Thiele
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 16, 64287Darmstadt, Germany
| | - Hana Dvořáková
- Laboratory
of NMR Spectroscopy, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| |
Collapse
|
3
|
Cantrelle FX, Boll E, Sinnaeve D. Making 1H- 1H Couplings More Accessible and Accurate with Selective 2DJ NMR Experiments Aided by 13C Satellites. Anal Chem 2024; 96:7056-7064. [PMID: 38666447 DOI: 10.1021/acs.analchem.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
1H-1H coupling constants are one of the primary sources of information for nuclear magnetic resonance (NMR) structural analysis. Several selective 2DJ experiments have been proposed that allow for their individual measurement at pure shift resolution. However, all of these experiments fail in the not uncommon case when coupled protons have very close chemical shifts. First, the coupling between protons with overlapping multiplets is inaccessible due to the inability of a frequency-selective pulse to invert just one of them. Second, the strong coupling condition affects the accuracy of coupling measurements involving third spins. These shortcomings impose a limit on the effectiveness of state-of-the-art experiments, such as G-SERF or PSYCHEDELIC. Here, we introduce two new and complementary selective 2DJ experiments that we coin SERFBIRD and SATASERF. These experiments overcome the aforementioned issues by utilizing the 13C satellite signals at natural isotope abundance, which resolves the chemical shift degeneracy. We demonstrate the utility of these experiments on the tetrasaccharide stachyose and the challenging case of norcamphor, for the latter achieving measurement of all JHH couplings, while only a few were accessible with PSYCHEDELIC. The new experiments are applicable to any organic compound and will prove valuable for configurational and conformational analyses.
Collapse
Affiliation(s)
- François-Xavier Cantrelle
- CNRS EMR 9002 ─ Integrative Structural Biology, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille UMR 1167 ─ RID-AGE ─ Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Emmanuelle Boll
- CNRS EMR 9002 ─ Integrative Structural Biology, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille UMR 1167 ─ RID-AGE ─ Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Davy Sinnaeve
- CNRS EMR 9002 ─ Integrative Structural Biology, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille UMR 1167 ─ RID-AGE ─ Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
4
|
Schirra DS, Jeziorowski S, Lehmann M, Thiele CM. Thermoreversible Gelation of Homopolyglutamates PBPMLG, PBPELG, and PBPHLG: Another Step toward de Novo RDC-Based Structure Elucidation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dominic S. Schirra
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sharon Jeziorowski
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Matthias Lehmann
- Institute for Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Christina M. Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
5
|
Vaňkátová P, Kubíčková A, Kalíková K. Enantioseparation of liquid crystals and their utilization as enantiodiscrimination materials. J Chromatogr A 2022; 1673:463074. [DOI: 10.1016/j.chroma.2022.463074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
|
6
|
Li GW, Wang XJ, Lei X, Liu N, Wu ZQ. Self-assembly of Helical Polymers and Oligomers to Create Liquid Crystalline Alignment for Anisotropic NMR Parameters. Macromol Rapid Commun 2022; 43:e2100898. [PMID: 35076973 DOI: 10.1002/marc.202100898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Indexed: 11/07/2022]
Abstract
The measurement of anisotropic residual dipolar couplings (RDCs) parameters for the structure elucidation of organic molecules relies on suitable alignment media. Employment of self-assembled liquid crystalline systems to create anisotropic alignment can be an effective way to realize aligned samples and acquire RDCs. This Mini-review highlights the recent advances on amino acid-based helical polymers and supramolecular oligomers forming rigid, rod-like structures that aggregate into ordered liquid crystalline phases, including amino acid-based helical polyisocyanides, polyacetylenes, polypeptides, and oligopeptides assembled alignment media. The methodology for the determination of anisotropic liquid crystals was briefly discussed, and a summary of recent research progress in the enantiodifferentiation of helical polymers aligned media was followed. In addition, the self-assembled mechanism of oligopeptides and their RDCs structural analysis were also described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, China
| |
Collapse
|
7
|
Novel Tdp1 Inhibitors Based on Adamantane Connected with Monoterpene Moieties via Heterocyclic Fragments. Molecules 2021; 26:molecules26113128. [PMID: 34073771 PMCID: PMC8197275 DOI: 10.3390/molecules26113128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 01/23/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a promising target for anticancer therapy due to its ability to counter the effects topoisomerase 1 (Top1) poison, such as topotecan, thus, decreasing their efficacy. Compounds containing adamantane and monoterpenoid residues connected via 1,2,4-triazole or 1,3,4-thiadiazole linkers were synthesized and tested against Tdp1. All the derivatives exhibited inhibition at low micromolar or nanomolar concentrations with the most potent inhibitors having IC50 values in the 0.35–0.57 µM range. The cytotoxicity was determined in the HeLa, HCT-116 and SW837 cancer cell lines; moderate CC50 (µM) values were seen from the mid-teens to no effect at 100 µM. Furthermore, citral derivative 20c, α-pinene-derived compounds 20f, 20g and 25c, and the citronellic acid derivative 25b were found to have a sensitizing effect in conjunction with topotecan in the HeLa cervical cancer and colon adenocarcinoma HCT-116 cell lines. The ligands are predicted to bind in the catalytic pocket of Tdp1 and have favorable physicochemical properties for further development as a potential adjunct therapy with Top1 poisons.
Collapse
|
8
|
Alcaraz Janßen M, Thiele CM. Poly-γ-S-perillyl-l-glutamate and Poly-γ-S-perillyl-d-glutamate: Diastereomeric Alignment Media Used for the Investigation of the Alignment Process. Chemistry 2020; 26:7831-7839. [PMID: 32134524 PMCID: PMC7384199 DOI: 10.1002/chem.201905447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 11/09/2022]
Abstract
Residual dipolar couplings (RDCs) offer additional information for structure elucidation by NMR spectroscopy. They are measured in anisotropic media, such as lyotropic liquid crystalline phases of polypeptides. Today, some suitable polypeptides are known. Nevertheless, structural influences of these polypeptides on the alignment properties are not really understood. Thus, which influence a chiral side chain has on enantiodiscrimination and whether we can improve the enantiodifferentiation significantly by adding an additional chiral center in the side chain are questions of interest. Therefore, new diastereomeric polypeptide-based alignment media with an additional chiral center in the side chain derived from perillyl alcohol were synthesized and their properties were investigated (secondary structure, liquid crystallinity, etc.). The enantiomers of isopinocampheol and β-pinene were used as model analytes for the study of enantiodiscrimination. Additionally, the usage of 1 H-1 H-RDCs to improve the alignment tensor quality is demonstrated.
Collapse
Affiliation(s)
- Marcel Alcaraz Janßen
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnical University of DarmstadtAlarich-Weiss-Str. 1664287DarmstadtGermany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnical University of DarmstadtAlarich-Weiss-Str. 1664287DarmstadtGermany
| |
Collapse
|