1
|
Xu ZY, Wei JS, Liu L, Hu QB, Zhu JY, Zhou ZY, Xia AB, Xu DQ. Synthesis of Tetrasubstituted Enamines Using Secondary Amines and In Situ-Generated Allenes from Nitrocyclopropanes. J Org Chem 2024; 89:13868-13875. [PMID: 39294860 DOI: 10.1021/acs.joc.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A novel reaction of cyclic and acyclic secondary amines with in situ-generated allene intermediate species from nitro-substituted donor-acceptor cyclopropanes is reported. In the presence of a simple inorganic base, NaOH, tetrasubstituted enamine derivatives can be obtained in moderate to excellent yields. The reaction is operationally easy, features mild reaction conditions and simple inorganic bases, and is free of transition metals.
Collapse
Affiliation(s)
- Zhong-Yang Xu
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jian-Sheng Wei
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Li Liu
- Hangzhou Guangcheng Energy & Environment Technology Company, Ltd., Hangzhou 310006, People's Republic of China
| | - Qing-Bo Hu
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jin-Yao Zhu
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhan-Yu Zhou
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ai-Bao Xia
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
2
|
Baruah MJ, Dutta R, Zaki MEA, Bania KK. Heterogeneous Iron-Based Catalysts for Organic Transformation Reactions: A Brief Overview. Molecules 2024; 29:3177. [PMID: 38999129 PMCID: PMC11243350 DOI: 10.3390/molecules29133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Iron (Fe) is considered to be one of the most significant elements due to its wide applications. Recent years have witnessed a burgeoning interest in Fe catalysis as a sustainable and cost-effective alternative to noble metal catalysis in organic synthesis. The abundance and low toxicity of Fe, coupled with its competitive reactivity and selectivity, underscore its appeal for sustainable synthesis. A lot of catalytic reactions have been performed using heterogeneous catalysts of Fe oxide hybridized with support systems like aluminosilicates, clays, carbonized materials, metal oxides or polymeric matrices. This review provides a comprehensive overview of the latest advancements in Fe-catalyzed organic transformation reactions. Highlighted areas include cross-coupling reactions, C-H activation, asymmetric catalysis, and cascade processes, showcasing the versatility of Fe across a spectrum of synthetic methodologies. Emphasis is placed on mechanistic insights, elucidating the underlying principles governing iron-catalyzed reactions. Challenges and opportunities in the field are discussed, providing a roadmap for future research endeavors. Overall, this review illuminates the transformative potential of Fe catalysis in driving innovation and sustainability in organic chemistry, with implications for drug discovery, materials science, and beyond.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemistry, DCB Girls' College, Jorhat 785001, Assam, India
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Rupjyoti Dutta
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
3
|
Gutiérrez López MÁ, Tan ML, Renno G, Jozeliūnaitė A, Nué-Martinez JJ, Lopez-Andarias J, Sakai N, Matile S. Anion-π catalysis on carbon allotropes. Beilstein J Org Chem 2023; 19:1881-1894. [PMID: 38116243 PMCID: PMC10729121 DOI: 10.3762/bjoc.19.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Anion-π catalysis, introduced in 2013, stands for the stabilization of anionic transition states on π-acidic aromatic surfaces. Anion-π catalysis on carbon allotropes is particularly attractive because high polarizability promises access to really strong anion-π interactions. With these expectations, anion-π catalysis on fullerenes has been introduced in 2017, followed by carbon nanotubes in 2019. Consistent with expectations from theory, anion-π catalysis on carbon allotropes generally increases with polarizability. Realized examples reach from enolate addition chemistry to asymmetric Diels-Alder reactions and autocatalytic ether cyclizations. Currently, anion-π catalysis on carbon allotropes gains momentum because the combination with electric-field-assisted catalysis promises transformative impact on organic synthesis.
Collapse
Affiliation(s)
| | - Mei-Ling Tan
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Giacomo Renno
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Gutiérrez López MÁ, Ali R, Tan ML, Sakai N, Wirth T, Matile S. Electric field-assisted anion-π catalysis on carbon nanotubes in electrochemical microfluidic devices. SCIENCE ADVANCES 2023; 9:eadj5502. [PMID: 37824606 PMCID: PMC10569703 DOI: 10.1126/sciadv.adj5502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
The vision to control the charges migrating during reactions with external electric fields is attractive because of the promise of general catalysis, emergent properties, and programmable devices. Here, we explore this idea with anion-π catalysis, that is the stabilization of anionic transition states on aromatic surfaces. Catalyst activation by polarization of the aromatic system is most effective. This polarization is induced by electric fields. The use of electrochemical microfluidic reactors to polarize multiwalled carbon nanotubes as anion-π catalysts emerges as essential. These reactors provide access to high fields at low enough voltage to prevent electron transfer, afford meaningful effective catalyst/substrate ratios, and avoid interference from additional electrolytes. Under these conditions, the rate of pyrene-interfaced epoxide-opening ether cyclizations is linearly voltage-dependent at positive voltages and negligible at negative voltages. While electromicrofluidics have been conceived for redox chemistry, our results indicate that their use for supramolecular organocatalysis has the potential to noncovalently electrify organic synthesis in the broadest sense.
Collapse
Affiliation(s)
- M. Ángeles Gutiérrez López
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Rojan Ali
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
| | - Mei-Ling Tan
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
5
|
Zhao W, He Z, Yang X, Yu Y, Baell JB, Huang F. Visible-Light-Induced Synthesis of 3-Alkyl Chromones under Catalyst- and Additive-Free Conditions. J Org Chem 2023; 88:13634-13644. [PMID: 37679947 DOI: 10.1021/acs.joc.3c01339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Herein, we reported an efficient and facile visible-light-induced 3-alkyl chromone synthesis from easily accessible o-hydroxyaryl enaminones and α-diazo esters. In this protocol, excellent yields were obtained with a broad substrate scope at room temperature, tolerating various functional groups. Of note is that this eco-friendly methodology features catalyst- and additive-free, mild reaction conditions, simple operation procedure, and easy scale-up, which affords a convenient pathway for the preparation of 3-alkyl chromones. Experimental results and density functional theory (DFT) computation analyses confirm the participation of carbene species and active cyclopropane intermediate.
Collapse
Affiliation(s)
- Wei Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaohui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Song W, Liu Y, Yan N, Wan JP. Tunable Key [3 + 2] and [2 + 1] Cycloaddition of Enaminones and α-Diazo Compounds for the Synthesis of Isomeric Isoxazoles: Metal-Controlled Selectivity. Org Lett 2023; 25:2139-2144. [PMID: 36946543 DOI: 10.1021/acs.orglett.3c00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The three-component reactions of enaminones, α-diazo esters/ketones, and t-butyl nitrite (TBN) for the switchable synthesis of isomeric isoxazoles have been realized. The catalysis with Cu(II) salt provides 3,4-disubsituted isoxazoles via [3 + 2] cycloaddition. On the other hand, the catalysis of Ag(I) with identical substrates leads to isomeric isoxazoles with reversed C3 and C4 substitution based on a key [2 + 1] cycloaddition.
Collapse
Affiliation(s)
- Wenli Song
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
7
|
Sun J, Jin J, Chang Y, Wang J, Zhang Q, Guo J. Unravelling temperature ramping rates in fabricating NaCl‐induced porous Co/N‐C electrocatalysts for oxygen reduction reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junting Sun
- Hangzhou Dianzi University College of Materials and Environmental Engineering Institute of Advanced Magnetic Materials Xiasha Higher Education Zone 310018 Hangzhou CHINA
| | - Jiaxiang Jin
- Hangzhou Dianzi University College of Electronics and Information CHINA
| | - Yatao Chang
- Hangzhou Dianzi University College of Electronics and Information CHINA
| | - Jing Wang
- Hangzhou Dianzi University College of Materials and Environmental Engineering CHINA
| | - Qindong Zhang
- Hangzhou Dianzi University College of Electronics and Information CHINA
| | - Junjie Guo
- Hangzhou Dianzi University College of Materials and Environmental Engineering CHINA
| |
Collapse
|
8
|
Zhang X, Yuan N, Xu S, Li Y, Wang Q. Efficient adsorptive elimination of organic pollutants from aqueous solutions on ZIF-8/MWCNTs-COOH nanoadsorbents: Adsorption kinetics, isotherms, and thermodynamic study. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Wang Y, Tian H, Li H, Deng X, Zhang Q, Ai Y, Sun Z, Wang Y, Liu L, Hu ZN, Zhang X, Guo R, Xu W, Liang Q, Sun HB. Encapsulating Electron-Rich Pd NPs with Lewis Acidic MOF: Reconciling the Electron-Preference Conflict of the Catalyst for Cascade Condensation via Nitro Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7949-7961. [PMID: 35130694 DOI: 10.1021/acsami.1c22256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cascade reactions take advantage of step-saving and facile operation for obtaining chemicals. Herein, catalytic hydrogenation of nitroarene coupled condensation with β-diketone to afford β-ketoenamines is achieved by an integrated nanocatalyst, Pd-e@UiO-66. The catalyst has the structure of an acid-rich metal-organic framework (MOF), UiO-66-encapsulated electron-rich Pd nanoparticles, and it reconciles the electron-effect contradiction of cascade catalytic reactions: catalytic hydrogenation requires an electron-rich catalyst, while condensation requires electron-deficient Lewis acid sites. The catalyst showed good activity, high chemoselectivity, and universal applicability for the synthesis of β-ketoenamines using nitroarenes. More than 30 β-ketoenamines have been successfully prepared with up to 99% yield via the methodology of relay catalysis. The catalyst exhibited excellent stability to maintain its catalytic performance for more than five cycles. Furthermore, we conducted an in-depth exploration of the reaction mechanism with theoretical calculations.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Haimeng Tian
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hong Li
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xinchen Deng
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Qiao Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yongjian Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, People's Republic of China
| | - Zejun Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lei Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ze-Nan Hu
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Rongxiu Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Wenjuan Xu
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
10
|
Chandrasekaran S, Zhang C, Shu Y, Wang H, Chen S, Nesakumar Jebakumar Immanuel Edison T, Liu Y, Karthik N, Misra R, Deng L, Yin P, Ge Y, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zhang P, Bowen C, Han Z. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
12
|
Ibis O, Zora M. A facile synthesis of 6-chloro-2-methylene-2,3-dihydro-1,4-oxazepines from N-propargylic β-enaminones. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Feng J, He T, Xie Y, Yu Y, Baell JB, Huang F. I 2-Promoted [4 + 2] cycloaddition of in situ generated azoalkenes with enaminones: facile and efficient synthesis of 1,4-dihydropyridazines and pyridazines. Org Biomol Chem 2020; 18:9483-9493. [PMID: 33179698 DOI: 10.1039/d0ob01958e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A facile and efficient strategy for the synthesis of 1,4-dihydropyridazines and pyridazines through I2-promoted [4 + 2] cycloaddition of in situ generated azoalkenes with enaminones has been developed. The switch in selectivity is attributed to the judicious choice of different reaction temperatures. The key features of this work include controllable and selective synthesis, good functional group tolerance, good to excellent reaction yields, metal/base-free conditions, and also applicability to one-pot methodology.
Collapse
Affiliation(s)
- Jiajun Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Tiantong He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. and Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. and School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|