1
|
Zhu Y, Archer WR, Morales KF, Schulz MD, Wang Y, Matson JB. Enzyme-Triggered Chemodynamic Therapy via a Peptide-H 2 S Donor Conjugate with Complexed Fe 2. Angew Chem Int Ed Engl 2023; 62:e202302303. [PMID: 37078735 PMCID: PMC10241505 DOI: 10.1002/anie.202302303] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 04/21/2023]
Abstract
Inducing high levels of reactive oxygen species (ROS) inside tumor cells is a cancer therapy method termed chemodynamic therapy (CDT). Relying on delivery of Fenton reaction promoters such as Fe2+ , CDT takes advantage of overproduced ROS in the tumor microenvironment. We developed a peptide-H2 S donor conjugate, complexed with Fe2+ , termed AAN-PTC-Fe2+ . The AAN tripeptide was specifically cleaved by legumain, an enzyme overexpressed in glioma cells, to release carbonyl sulfide (COS). Hydrolysis of COS by carbonic anhydrase formed H2 S, an inhibitor of catalase, an enzyme that detoxifies H2 O2 . Fe2+ and H2 S together increased intracellular ROS levels and decreased viability in C6 glioma cells compared with controls lacking either Fe2+ , the AAN sequence, or the ability to generate H2 S. AAN-PTC-Fe2+ performed better than temezolimide while exhibiting no cytotoxicity toward H9C2 cardiomyocytes. This study provides an H2 S-amplified, enzyme-responsive platform for synergistic cancer treatment.
Collapse
Affiliation(s)
- Yumeng Zhu
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - William R. Archer
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Katlyn F. Morales
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules, Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Liu M, Wang Y, Yan Z, Yang J, Wu Y, Ding D, Ji X. Photoclick and Release: Co-activation of Carbon Monoxide and a Fluorescent Self-reporter, COS or Sulfonamide with Fast Kinetics. Chembiochem 2023; 24:e202200506. [PMID: 36450656 DOI: 10.1002/cbic.202200506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Bioorthogonal prodrugs with both fast reaction kinetics and multiple outputs are highly desirable but are only found sporadically. Herein, we report a novel photoclick-and-release strategy for the co-activation of carbon monoxide and a self-reporter, carbonyl sulfide, or sulfonamide with fast reaction kinetics (k: 1.4-22.6 M-1 s-1 ). Such a photoclick-and-release strategy was successfully applied in live cells to deliver carbon monoxide and a fluorescent self-reporter, both of which exhibited pronounced antiproliferative activity against 4T1 cancer cells. It is conceivable that this photoclick-and-release strategy could find applications in other fields, in which a controlled bond cleavage is preferred.
Collapse
Affiliation(s)
- Miao Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| | - Yuhan Wang
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| | - Zhicheng Yan
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| | - Jiabin Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, P. R. China
| | - Yongyou Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, P. R. China
| | - Dawei Ding
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| |
Collapse
|
3
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
4
|
Jiao Y, Ye H, Huang H, Yi L, Sun L. Thiobenzophenones: tunable hydrolysis-based donors for intracellular H2S delivery. NEW J CHEM 2022. [DOI: 10.1039/d2nj01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2S, the third gasotransmitter, is involved in many physiological and pathological processes. Compounds that can release H2S slowly under physiological conditions are useful chemical tools for studying H2S biology as...
Collapse
|
5
|
Kaur K, Enders P, Zhu Y, Bratton AF, Powell CR, Kashfi K, Matson JB. Amino acid-based H 2S donors: N-thiocarboxyanhydrides that release H 2S with innocuous byproducts. Chem Commun (Camb) 2021; 57:5522-5525. [PMID: 33956024 DOI: 10.1039/d1cc01309b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A library of N-thiocarboxyanhydrides (NTAs) derived from natural amino acids with benign byproducts and controlled H2S-release kinetics is reported. Minimal acute in vitro toxicity was observed in multiple cell lines, while longer-term toxicity in cancer cells was observed, with slow-releasing donors exhibiting the greatest cytotoxic effects.
Collapse
Affiliation(s)
- Kuljeet Kaur
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA. and Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Patrick Enders
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA. and Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, Rostock 18059, Germany
| | - Yumeng Zhu
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Abigail F Bratton
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Chadwick R Powell
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
6
|
Pluth M. Moving Past Quinone-Methides: Recent Advances toward Minimizing Electrophilic Byproducts from COS/H2S Donors. Curr Top Med Chem 2021; 21:2882-2889. [PMID: 34161211 DOI: 10.2174/1568026621666210622130002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide (H2S) is an important biomolecule that plays key signaling and protective roles in different physiological processes. With the goals of advancing both the available research tools and the associated therapeutic potential of H2S, researchers have developed different methods to deliver H2S on-demand in different biological contexts. A recent approach to develop such donors has been to design compounds that release carbonyl sulfide (COS), which is quickly converted to H2S in biological systems by the ubiquitous enzyme carbonic anhydrase (CA). Although highly diversifiable, many approaches using this general platform release quinone methides or related electrophiles after donor activation. Many such electrophiles are likely scavenged by water, but recent efforts have also expanded alternative approaches that minimize the formation of electrophilic byproducts generated after COS release. This mini-review focuses specifically on recent examples of COS-based H2S donors that do not generate quinone methide byproducts after donor activation.
Collapse
Affiliation(s)
- Michael Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology. University of Oregon. Eugene, OR, United States
| |
Collapse
|
7
|
Gholap S, Yao C, Green O, Babjak M, Jakubec P, Malatinský T, Ihssen J, Wick L, Spitz U, Shabat D. Chemiluminescence Detection of Hydrogen Sulfide Release by β-Lactamase-Catalyzed β-Lactam Biodegradation: Unprecedented Pathway for Monitoring β-Lactam Antibiotic Bacterial Resistance. Bioconjug Chem 2021; 32:991-1000. [PMID: 33896185 PMCID: PMC8382227 DOI: 10.1021/acs.bioconjchem.1c00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Indexed: 12/20/2022]
Abstract
β-Lactamase positive bacteria represent a growing threat to human health because of their resistance to commonly used antibiotics. Therefore, development of new diagnostic methods for identification of β-lactamase positive bacteria is of high importance for monitoring the spread of antibiotic-resistant bacteria. Here, we report the discovery of a new biodegradation metabolite (H2S), generated through β-lactamase-catalyzed hydrolysis of β-lactam antibiotics. This discovery directed us to develop a distinct molecular technique for monitoring bacterial antibiotic resistance. The technique is based on a highly efficient chemiluminescence probe, designed for detection of the metabolite, hydrogen sulfide, that is released upon biodegradation of β-lactam by β-lactamases. Such an assay can directly indicate if antibiotic bacterial resistance exists for a certain examined β-lactam. The assay was successfully demonstrated for five different β-lactam antibiotics and eight β-lactam resistant bacterial strains. Importantly, in a functional bacterial assay, our chemiluminescence probe was able to clearly distinguish between a β-lactam resistant bacterial strain and a sensitive one. As far as we know, there is no previous documentation for such a biodegradation pathway of β-lactam antibiotics. Bearing in mind the data obtained in this study, we propose that hydrogen sulfide should be considered as an emerging β-lactam metabolite for detection of bacterial resistance.
Collapse
Affiliation(s)
- Sachin
Popat Gholap
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel
| | - Chunyan Yao
- Biosynth
Carbosynth, Rietlistrasse
4 Postfach 125 9422 Staad, Switzerland
| | - Ori Green
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel
| | - Matej Babjak
- Department
of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Pavol Jakubec
- Auchem
s.r.o., A. Hlinku 1452/3, 022 01 Čadca, Slovakia
| | | | - Julian Ihssen
- Biosynth
Carbosynth, Rietlistrasse
4 Postfach 125 9422 Staad, Switzerland
| | - Lukas Wick
- Biosynth
Carbosynth, Rietlistrasse
4 Postfach 125 9422 Staad, Switzerland
| | - Urs Spitz
- Biosynth
Carbosynth, Rietlistrasse
4 Postfach 125 9422 Staad, Switzerland
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel
| |
Collapse
|
8
|
Levinn CM, Mancuso JL, Lutz RE, Smith HM, Hendon CH, Pluth MD. N-Methylation of Self-Immolative Thiocarbamates Provides Insights into the Mechanism of Carbonyl Sulfide Release. J Org Chem 2021; 86:5443-5451. [PMID: 33818104 DOI: 10.1021/acs.joc.0c02778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2S) is an important biomolecule, and self-immolative thiocarbamates have shown great promise as triggerable H2S donors with suitable analogous control compounds; however, thiocarbamates with electron-deficient payloads are less efficient H2S donors. We report here the synthesis and study of a series of N-methylated esterase-triggered thiocarbamates that block the postulated unproductive deprotonation-based pathway for these compounds. The relative reaction profiles for H2S release across a series of electron-rich and electron-poor N-Me aniline payloads are examined experimentally and computationally. We show that thiocarbamate N-methylation does block some side reactivity and increases the H2S release profiles for electron-poor donors. Additionally, we show that isothiocyanate release is not a competitive pathway, and rather that the reduced efficiency of electron-poor donors is likely due to other side reactions.
Collapse
Affiliation(s)
- Carolyn M Levinn
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Jenna L Mancuso
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Rachel E Lutz
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Haley M Smith
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
9
|
Liu G, Lovell JF, Zhang L, Zhang Y. Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment. Int J Mol Sci 2020; 21:E6380. [PMID: 32887466 PMCID: PMC7504550 DOI: 10.3390/ijms21176380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Stimulus-responsive drug delivery systems generally aim to release the active pharmaceutical ingredient (API) in response to specific conditions and have recently been explored for disease treatments. These approaches can also be extended to molecular imaging to report on disease diagnosis and management. The stimuli used for activation are based on differences between the environment of the diseased or targeted sites, and normal tissues. Endogenous stimuli include pH, redox reactions, enzymatic activity, temperature and others. Exogenous site-specific stimuli include the use of magnetic fields, light, ultrasound and others. These endogenous or exogenous stimuli lead to structural changes or cleavage of the cargo carrier, leading to release of the API. A wide variety of stimulus-responsive systems have been developed-responsive to both a single stimulus or multiple stimuli-and represent a theranostic tool for disease treatment. In this review, stimuli commonly used in the development of theranostic nanoplatforms are enumerated. An emphasis on chemical structure and property relationships is provided, aiming to focus on insights for the design of stimulus-responsive delivery systems. Several examples of theranostic applications of these stimulus-responsive nanomedicines are discussed.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Lei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Zhou S, Mou Y, Liu M, Du Q, Ali B, Ramprasad J, Qiao C, Hu LF, Ji X. Insights into the Mechanism of Thiol-Triggered COS/H 2S Release from N-Dithiasuccinoyl Amines. J Org Chem 2020; 85:8352-8359. [PMID: 32496068 DOI: 10.1021/acs.joc.0c00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hydrolysis of carbonyl sulfide (COS) to form H2S by carbonic anhydrase has been demonstrated to be a viable strategy to deliver H2S in a biological system. Herein, we describe N-dithiasuccinoyl amines as thiol-triggered COS/H2S donors. Notably, thiol species especially GSH and homocysteine can trigger the release of both COS and H2S directly from several specific analogues via an unexpected mechanism. Importantly, two representative analogues Dts-1 and Dts-5 show intracellular H2S release, and Dts-1 imparts potent anti-inflammatory effects in LPS-challenged microglia cells. In conclusion, N-dithiasuccinoyl amine could serve as promising COS/H2S donors for either H2S biological studies or H2S-based therapeutics development.
Collapse
Affiliation(s)
- Shengchao Zhou
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yujie Mou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Miao Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Qian Du
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Basharat Ali
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Jurupula Ramprasad
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Chunhua Qiao
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|