1
|
Dannenberg RL, Cardina JA, Washington H, Gao S, Greenberg MM, Hedglin M. A human high-fidelity DNA polymerase holoenzyme has a wide range of lesion bypass activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618244. [PMID: 39464047 PMCID: PMC11507776 DOI: 10.1101/2024.10.14.618244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
During replication, lagging strand lesions are initially encountered by high-fidelity DNA polymerase (pol) holoenzymes comprised of pol δ and the PCNA sliding clamp. To proceed unhindered, pol δ holoenzymes must bypass lesions without stalling. This entails dNMP incorporation opposite the lesion (insertion) and the 5' template nucleotide (extension). Historically, it was viewed that high-fidelity pol holoenzymes stall upon encountering lesions, activating DNA damage tolerance pathways that are ultimately responsible for lesion bypass. Our recent study of 4 prominent lesions revealed that human pol δ holoenzymes support insertion and/or bypass for multiple lesions and the extents of these activities depends on the lesion and pol δ proofreading. In the present study, we expand these analyses to other prominent lesions. Collectively, analyses of 10 lesions from both studies reveal that the insertion and bypass efficiencies of pol δ holoenzymes each span a complete range (0 - 100%). Consequently, the fates of pol δ holoenzymes upon encountering lesions are quite diverse. Furthermore, pol δ proofreading promoted holoenzyme progression at 7 of the 10 lesions and did not deter progression at any. Altogether, the results significantly alter our understanding of the replicative capacity of high-fidelity pol holoenzymes and their functional role(s) in lesion bypass.
Collapse
Affiliation(s)
- Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Joseph A. Cardina
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Helen Washington
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
2
|
Gao S, Hou P, Wang D, Greenberg MM. T7 RNA polymerase catalyzed transcription of the epimerizable DNA lesion, Fapy•dG and 8-oxo-2'-deoxyguanosine. J Biol Chem 2024; 300:107719. [PMID: 39214306 PMCID: PMC11447338 DOI: 10.1016/j.jbc.2024.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Fapy•dG (N6-(2-deoxy-α,β-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine) and 8-OxodGuo (8-oxo-7,8-dihydro-2'-deoxyguanosine) are major products of 2'-deoxyguanosine oxidation. Fapy•dG is unusual in that it exists as a dynamic mixture of anomers. Much less is known about the effects of Fapy•dG than 8-OxodGuo on transcriptional bypass. The data presented here indicate that T7 RNA polymerase (T7 RNAP) bypass of Fapy•dG is more complex than that of 8-OxodGuo. Primer-dependent transcriptional bypass of Fapy•dG by T7 RNAP is hindered compared to 2'-deoxyguanosine. T7 RNAP incorporates cytidine opposite Fapy•dG in a miniscaffold at least 13-fold more rapidly than A, G, or U. Fitting of reaction data indicates that Fapy•dG anomers are kinetically distinguishable. Extension of a nascent transcript past Fapy•dG is weakly dependent on the nucleotide opposite the lesion. The rate constants describing extension past fast- or slow-reacting base pairs vary less than twofold as a function of the nucleotide opposite the lesion. Promoter-dependent T7 RNAP bypass of Fapy•dG and 8-OxodGuo was carried out side by side. 8-OxodGuo bypass results in >55% A opposite it. When the shuttle vector contains a Fapy•dG:dA base pair, as high as 20% point mutations and 9% single-nucleotide deletions are produced upon Fapy•dG bypass. Error-prone bypass of a Fapy•dG:dC base pair accounts for ∼9% of the transcripts. Transcriptional bypass mutation frequencies of Fapy•dG and 8-OxodGuo measured in RNA products are comparable to or greater than replication errors, suggesting that these lesions could contribute to mutations significantly through transcription.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peini Hou
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Dasgupta S, Gao S, Yang H, Greenberg MM, Basu AK. 8-OxodGuo and Fapy•dG Mutagenicity in Escherichia coli Increases Significantly when They Are Part of a Tandem Lesion with 5-Formyl-2'-deoxyuridine. Chem Res Toxicol 2024; 37:1445-1452. [PMID: 39041427 PMCID: PMC11333159 DOI: 10.1021/acs.chemrestox.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Tandem lesions, which are defined by two or more contiguously damaged nucleotides, are a hallmark of ionizing radiation. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5-fdU) flanked by a 5'-8-OxodGuo or Fapy•dG were discovered, and they are more mutagenic in human cells than the isolated lesions. In the current study, we examined replication of these tandem lesions in Escherichia coli. Bypass efficiency of both tandem lesions was reduced by 30-40% compared to the isolated lesions. Mutation frequencies (MFs) of isolated 8-OxodGuo and Fapy•dG were low, and no mutants were isolated from replication of a 5-fdU construct. The types of mutations from 8-OxodGuo were targeted G → T transversion, whereas Fapy•dG predominantly gave G → T and G deletion. 5'-8-OxodGuo-5-fdU also gave exclusively G → T mutation, which was 3-fold and 11-fold greater, without and with SOS induction, respectively, compared to that of an isolated 8-OxodGuo. In mutY/mutM cells, the MF of 8-OxodGuo and 5'-8-OxodGuo-5-fdU increased 13-fold and 7-fold, respectively. The MF of 5'-8-OxodGuo-5-fdU increased 2-fold and 3-fold in Pol II- and Pol IV-deficient cells, respectively, suggesting that these polymerases carry out largely error-free bypass. The MF of 5'- Fapy•dG-5-fdU was similar without (13 ± 1%) and with (16 ± 2%) SOS induction. Unlike the complex mutation spectrum reported earlier in human cells for 5'- Fapy•dG-5-fdU, with G → T as the major type of errors, in E. coli, the mutations were predominantly from deletion of 5-fdU. We postulate that removal of adenine-incorporated opposite 8-OxodGuo by Fpg and MutY repair proteins is partially impaired in the tandem 5'-8-OxodGuo-5-fdU, resulting in an increase in the G → T mutations, whereas a slippage mechanism may be operating in the 5'- Fapy•dG-5-fdU mutagenesis. This study showed that not only are these tandem lesions more mutagenic than the isolated lesions but they may also exhibit different types of mutations in different organisms.
Collapse
Affiliation(s)
- Srijana Dasgupta
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Gao S, Tahara Y, Kool E, Greenberg M. Promoter dependent RNA polymerase II bypass of the epimerizable DNA lesion, Fapy•dG and 8-Oxo-2'-deoxyguanosine. Nucleic Acids Res 2024; 52:7437-7446. [PMID: 38908029 PMCID: PMC11260475 DOI: 10.1093/nar/gkae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
Formamidopyrimidine (Fapy•dG) is a major lesion arising from oxidation of dG that is produced from a common chemical precursor of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). In human cells, replication of single-stranded shuttle vectors containing Fapy•dG is more mutagenic than 8-OxodGuo. Here, we present the first data regarding promoter dependent RNA polymerase II bypass of Fapy•dG. 8-OxodGuo bypass was examined side-by-side. Experiments were carried out using double-stranded shuttle vectors in HeLa cell nuclear lysates and in HEK 293T cells. The lesions do not significantly block transcriptional bypass efficiency. Less than 2% adenosine incorporation occurred in cells when the lesions were base paired with dC. Inhibiting base excision repair in HEK 293T cells significantly increased adenosine incorporation, particularly from Fapy•dG:dC bypass which yielded ∼25% adenosine incorporation. No effect was detected upon transcriptional bypass of either lesion in nucleotide excision repair deficient cells. Transcriptional mutagenesis was significantly higher when shuttle vectors containing dA opposite one of the lesions were employed. For Fapy•dG:dA bypass, adenosine incorporation was greater than 85%; whereas 8-OxodGuo:dA yielded >20% point mutations. The combination of more frequent replication mistakes and greater error-prone Pol II bypass suggest that Fapy•dG is more mutagenic than 8-OxodGuo.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, MDÂ 21218, USA
| | - Yuki Tahara
- Department of Chemistry, Stanford University, Stanford, CAÂ 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CAÂ 94305, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MDÂ 21218, USA
| |
Collapse
|
5
|
Gao S, Oden P, Ryan B, Yang H, Freudenthal B, Greenberg M. Biochemical and structural characterization of Fapy•dG replication by Human DNA polymerase β. Nucleic Acids Res 2024; 52:5392-5405. [PMID: 38634780 PMCID: PMC11109955 DOI: 10.1093/nar/gkae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
N6-(2-deoxy-α,β-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase β (Pol β), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol β incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Peyton N Oden
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, KS City, KSÂ 66160, USA
| | - Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, KS City, KSÂ 66160, USA
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, KS City, KSÂ 66160, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Gao S, Oden PN, Ryan BJ, Yang H, Freudenthal BD, Greenberg MM. Biochemical and Structural Characterization of Fapy•dG Replication by Human DNA Polymerase β. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575758. [PMID: 38293220 PMCID: PMC10827042 DOI: 10.1101/2024.01.15.575758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
N6-(2-deoxy-α,β-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase β (Pol β), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol β incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.
Collapse
|
7
|
Bacurio JHT, Gao S, Yang H, Basu AK, Greenberg MM. Synergistic effects on mutagenicity of tandem lesions containing 8-oxo-7,8-dihydro-2'-deoxyguanosine or Fapy•dG flanked by a 3' 5-formyl-2'-deoxyuridine in human cells. DNA Repair (Amst) 2023; 129:103527. [PMID: 37467631 PMCID: PMC10528826 DOI: 10.1016/j.dnarep.2023.103527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023]
Abstract
Modified nucleotides often hinder and/or decrease the fidelity of DNA polymerases. Tandem lesions, which are comprised of DNA modifications at two contiguous nucleotide positions, can be even more detrimental to genome stability. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5fdU) flanked at the 5'-position by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) or N-(2-deoxy-α,β-D-erythropentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy•dG) were discovered. We examined the replication of 5'- 8-OxodGuo-5fdU and 5'-Fapy•dG-5fdU tandem lesions in HEK 293T cells and several polymerase deficient variants by transfecting single-stranded vectors containing them. The local sequence of the tandem lesions encompasses the 273 codon of the p53 gene, a mutational hot-spot. The bypass efficiency and mutation spectra of the tandem lesions were compared to those of the isolated lesions. Replication of weakly mutagenic 5-fdU is little changed when part of the 5'- 8-OxodGuo-5fdU tandem lesion. G → T transversions attributable to 8-OxodGuo increase > 10-fold when the tandem lesion is bypassed. 5'-Fapy•dG-5fdU has a synergistic effect on the error-prone bypass of both lesions. The mutation frequency (MF) of 5'-Fapy•dG-5fdU increases 3-fold compared to isolated Fapy•dG. In addition, a 5'-adjacent Fapy•dG significantly increases the MF of 5fdU. The major mutation, G → T transversions, decrease by almost a third in hPol κ- cells, which is the opposite effect when isolated Fapy•dG in the same sequence context is replicated in HEK 293T cells in the same sequence. Steady-state kinetics indicate that hPol κ contributes to greater G → T transversions by decreasing the specificity constant for dCTP compared to an isolated Fapy•dG. The greater conformational freedom of Fapy•dG compared to 8-OxodGuo and its unusual ability to epimerize at the anomeric center is believed to be the source of the complex effects of 5'-Fapy•dG-5fdU on replication.
Collapse
Affiliation(s)
| | - Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Respiratory and Critical Care Medicine Targeted Tracer Research and Development Laboratory West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Kurup HM, Kvach MV, Harjes S, Barzak FM, Jameson GB, Harjes E, Filichev VV. Design, Synthesis, and Evaluation of a Cross-Linked Oligonucleotide as the First Nanomolar Inhibitor of APOBEC3A. Biochemistry 2022; 61:2568-2578. [DOI: 10.1021/acs.biochem.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harikrishnan M. Kurup
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Maksim V. Kvach
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Fareeda M. Barzak
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Geoffrey B. Jameson
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Vyacheslav V. Filichev
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
9
|
Ryan BJ, Yang H, Bacurio JHT, Smith MR, Basu AK, Greenberg MM, Freudenthal BD. Structural Dynamics of a Common Mutagenic Oxidative DNA Lesion in Duplex DNA and during DNA Replication. J Am Chem Soc 2022; 144:8054-8065. [PMID: 35499923 PMCID: PMC9097547 DOI: 10.1021/jacs.2c00193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
N6-(2-Deoxy-α,β-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo. A distinctive property of Fapy•dG is facile epimerization, but prior works with Fapy•dG analogues have precluded determining its effect on chemistry. We present crystallographic characterization of natural Fapy•dG in duplex DNA and as the template base for DNA polymerase β (Pol β). Fapy•dG adopts the β-anomer when base paired with cytosine but exists as a mixture of α- and β-anomers when promutagenically base paired with adenine. Rotation about the bond between the glycosidic nitrogen atom and the pyrimidine ring is also affected by the opposing nucleotide. Sodium cyanoborohydride soaking experiments trap the ring-opened Fapy•dG, demonstrating that ring opening and epimerization occur in the crystalline state. Ring opening and epimerization are facilitated by propitious water molecules that are observed in the structures. Determination of Fapy•dG mutagenicity in wild type and Pol β knockdown HEK 293T cells indicates that Pol β contributes to G → T transversions but also suppresses G → A transitions. Complementary kinetic studies have determined that Fapy•dG promotes mutagenesis by decreasing the catalytic efficiency of dCMP insertion opposite Fapy•dG, thus reducing polymerase fidelity. Kinetic studies have determined that dCMP incorporation opposite the β-anomer is ∼90 times faster than the α-anomer. This research identifies the importance of anomer dynamics, a feature unique to formamidopyrimidines, when considering the incorporation of nucleotides opposite Fapy•dG and potentially the repair of this structurally unusual lesion.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Henric T Bacurio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
10
|
Sun J, Antczak NM, Gahlon HL, Sturla SJ. Molecular beacons with oxidized bases report on substrate specificity of DNA oxoguanine glycosylases. Chem Sci 2022; 13:4295-4302. [PMID: 35509469 PMCID: PMC9007065 DOI: 10.1039/d1sc05648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
DNA glycosylase enzymes recognize and remove structurally distinct modified forms of DNA bases, thereby repairing genomic DNA from chemically induced damage or erasing epigenetic marks. However, these enzymes are often promiscuous, and advanced tools are needed to evaluate and engineer their substrate specificity. Thus, in the present study, we developed a new strategy to rapidly profile the substrate specificity of 8-oxoguanine glycosylases, which cleave biologically relevant oxidized forms of guanine. We monitored the enzymatic excision of fluorophore-labeled oligonucleotides containing synthetic modifications 8-oxoG and FapyG, or G. Using this molecular beacon approach, we identified several hOGG1 mutants with higher specificity for FapyG than 8-oxoG. This approach and the newly synthesized probes will be useful for the characterization of glycosylase substrate specificity and damage excision mechanisms, as well as for evaluating engineered enzymes with altered reactivities.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Health Sciences and Technology, ETH Zürich Zürich 8092 Switzerland
- Department of Biological Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Nicole M Antczak
- Department of Health Sciences and Technology, ETH Zürich Zürich 8092 Switzerland
- Department of Chemistry, Skidmore College 815 North Broadway Saratoga Springs NY 12866 USA
| | - Hailey L Gahlon
- Department of Health Sciences and Technology, ETH Zürich Zürich 8092 Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich Zürich 8092 Switzerland
| |
Collapse
|
11
|
Bacurio JHT, Yang H, Naldiga S, Powell BV, Ryan BJ, Freudenthal BD, Greenberg MM, Basu AK. Sequence context effects of replication of Fapy•dG in three mutational hot spot sequences of the p53 gene in human cells. DNA Repair (Amst) 2021; 108:103213. [PMID: 34464900 DOI: 10.1016/j.dnarep.2021.103213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023]
Abstract
Fapy•dG and 8-OxodGuo are formed in DNA from a common N7-dG radical intermediate by reaction with hydroxyl radical. Although cellular levels of Fapy•dG are often greater, its effects on replication are less well understood than those of 8-OxodGuo. In this study plasmid DNA containing Fapy•dG in three mutational hotspots of human cancers, codons 248, 249, and 273 of the p53 tumor suppressor gene, was replicated in HEK 293T cells. TLS efficiencies for the Fapy•dG containing plasmids varied from 72 to 89%, and were further reduced in polymerase-deficient cells. The mutation frequency (MF) of Fapy•dG ranged from 7.3 to 11.6%, with G→T and G→A as major mutations in codons 248 and 249 compared to primarily G→T in codon 273. Increased MF in hPol ι-, hPol κ-, and hPol ζ-deficient cells suggested that these polymerases more frequently insert the correct nucleotide dC opposite Fapy•dG, whereas decreased G→A in codons 248 and 249 and reduction of all mutations in codon 273 in hPol λ-deficient cells indicated hPol λ's involvement in Fapy•dG mutagenesis. In vitro kinetic analysis using isolated translesion synthesis polymerases and hPol λ incompletely corroborated the mutagenesis experiments, indicating codependence on other proteins in the cellular milieu. In conclusion, Fapy•dG mutagenesis is dependent on the DNA sequence context, but its bypass by the TLS polymerases is largely error-free.
Collapse
Affiliation(s)
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Spandana Naldiga
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Brent V Powell
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|