1
|
Su L, Yang D, Jiang Y, Li Y, Di K, Wang B, Ye S, Qu J. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angew Chem Int Ed Engl 2022; 61:e202203121. [DOI: 10.1002/anie.202203121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yang Jiang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Yahui Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Kai Di
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Shengfa Ye
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Centre for Biomanufacturing Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
2
|
Su L, Yang D, Jiang Y, Li Y, Di K, Wang B, Ye S, Qu J. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yang Jiang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Yahui Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Kai Di
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Shengfa Ye
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Centre for Biomanufacturing Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
3
|
Kuriyama S, Wei S, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Synthesis and Reactivity of Cobalt-Dinitrogen Complexes Bearing Anionic PCP-Type Pincer Ligands toward Catalytic Silylamine Formation from Dinitrogen. Inorg Chem 2022; 61:5190-5195. [PMID: 35313105 DOI: 10.1021/acs.inorgchem.2c00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of cobalt(I)-dinitrogen complexes bearing anionic 4-substituted benzene-based PCP-type pincer ligands are synthesized and characterized. These complexes work as highly efficient catalysts for the formation of silylamine from dinitrogen under ambient reaction conditions to produce up to 371 equiv of silylamine based on the cobalt atom of the catalyst.
Collapse
Affiliation(s)
- Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shenglan Wei
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Sameera W, Takeda Y, Ohki Y. Transition metal catalyzed cross-coupling and nitrogen reduction reactions: Lessons from computational studies. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Li M, Gupta SK, Dechert S, Demeshko S, Meyer F. Merging Pincer Motifs and Potential Metal-Metal Cooperativity in Cobalt Dinitrogen Chemistry: Efficient Catalytic Silylation of N 2 to N(SiMe 3 ) 3. Angew Chem Int Ed Engl 2021; 60:14480-14487. [PMID: 33829680 PMCID: PMC8251579 DOI: 10.1002/anie.202101387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Using a pyrazolate-bridged dinucleating ligand that provides two proximate pincer-type PNN binding sites ("two-in-one pincer"), different synthetic routes have been developed towards its dicobalt(I) complex 2 that features a twice deprotonated ligand backbone and two weakly activated terminal N2 substrate ligands directed into the bimetallic pocket. Protonation of 2 is shown to occur at the ligand scaffold and to trigger conversion to a tetracobalt(I) complex 4 with two end-on μ1,2 -bridging N2 ; in THF 4 is labile and undergoes temperature-dependent N2 /triflate ligand exchange. These pyrazolate-based systems combine the potential of exhibiting both metal-metal and metal-ligand cooperativity, viz. two concepts that have emerged as promising design motifs for molecular N2 fixation catalysts. Complex 2 serves as an efficient (pre)catalyst for the reductive silylation of N2 into N(SiMe3 )3 (using KC8 and Me3 SiCl), yielding up to 240 equiv N(SiMe3 )3 per catalyst.
Collapse
Affiliation(s)
- Ming Li
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Sandeep K. Gupta
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Sebastian Dechert
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Serhiy Demeshko
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Franc Meyer
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
- Universität GöttingenInternational Center for Advanced Studies of Energy Conversion (ICASEC)Tammannstrasse 637077GöttingenGermany
- Universität GöttingenWöhler Research Institute for Sustainable Chemistry (WISCh)Tammannstrasse 237077GöttingenGermany
| |
Collapse
|
6
|
Li M, Gupta SK, Dechert S, Demeshko S, Meyer F. Merging Pincer Motifs and Potential Metal–Metal Cooperativity in Cobalt Dinitrogen Chemistry: Efficient Catalytic Silylation of N
2
to N(SiMe
3
)
3. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming Li
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Sandeep K. Gupta
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Franc Meyer
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
- Universität Göttingen International Center for Advanced Studies of Energy Conversion (ICASEC) Tammannstrasse 6 37077 Göttingen Germany
- Universität Göttingen Wöhler Research Institute for Sustainable Chemistry (WISCh) Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
7
|
Takao T, Suzuki H, Shimogawa R. Syntheses and Properties of Triruthenium Polyhydrido Complexes Composed of 1,2,4-tri- tert-butylcyclopentadienyl and p-Cymene Ruthenium Units. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiro Takao
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hidenori Suzuki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryuichi Shimogawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
8
|
Tanabe Y, Nishibayashi Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem Soc Rev 2021; 50:5201-5242. [PMID: 33651046 DOI: 10.1039/d0cs01341b] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N2 is fixed as NH3 industrially by the Haber-Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes. Since the early 21st century, catalytic conversion of N2 into NH3 under ambient conditions has been achieved by using molecular catalysts, and now H2O has been utilized as a proton source with turnover frequencies reaching the values found for biological nitrogen fixation. In this review, recent advances in the development of molecular catalysts for synthetic N2 fixation under ambient or mild conditions are summarized, and potential directions for future research are also discussed.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
9
|
Dong Y, Zhang P, Fan Q, Du X, Xie S, Sun H, Li X, Fuhr O, Fenske D. The Effect of Substituents on the Formation of Silyl [PSiP] Pincer Cobalt(I) Complexes and Catalytic Application in Both Nitrogen Silylation and Alkene Hydrosilylation. Inorg Chem 2020; 59:16489-16499. [PMID: 33108179 DOI: 10.1021/acs.inorgchem.0c02332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four different [PSiP]-pincer ligands L1-L4 ((2-Ph2PC6H4)2SiHR (R = H (L1) and Ph (L2)) and (2-iPr2PC6H4)2SiHR' (R' = Ph (L3) and H (L4)) were used to investigate the effect of substituents at P and/or Si atom of the [PSiP] pincer ligands on the formation of silyl cobalt(I) complexes by the reactions with CoMe(PMe3)4 via Si-H cleavage. Two penta-coordinated silyl cobalt(I) complexes, (2-Ph2PC6H4)2HSiCo(PMe3)2 (1) and (2-Ph2PC6H4)2PhSiCo(PMe3)2 (2), were obtained from the reactions of L1 and L2 with CoMe(PMe3)4, respectively. Under similar reaction conditions, a tetra-coordinated cobalt(I) complex (2-iPr2PC6H4)2PhSiCo(PMe3) (3) was isolated from the interaction of L3 with CoMe(PMe3)4. It was found that, only in the case of ligand L4, silyl dinitrogen cobalt(I) complex 4, [(2-iPr2PC6H4)2HSiCo(N2)(PMe3)], was formed. Our results indicate that the increasing of electron cloud density at the Co center is beneficial for the formation of a dinitrogen cobalt complex because the large electron density at Co center leads to the enhancement of the π-backbonding from cobalt to the coordinated N2. It was found that silyl dinitrogen cobalt(I) complex 4 is an effective catalyst for catalytic transformation of dinitrogen into silylamine. Among these four silyl cobalt(I) complexes, complex 1 is the best catalyst for hydrosilylation of alkenes with excellent regioselectivity. For aromatic alkenes, catalyst 1 provided Markovnikov products, while for aliphatic alkenes, anti-Markovnikov products could be obtained. Both catalytic reaction mechanisms were proposed and discussed. The molecular structures of complexes 1-4 were confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Ohki Y, Ishihara K, Yaoi M, Tada M, Sameera WMC, Cramer RE. A dinuclear Mo 2H 8 complex supported by bulky C 5H 2tBu 3 ligands. Chem Commun (Camb) 2020; 56:8035-8038. [PMID: 32691780 DOI: 10.1039/d0cc03274c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydride-bridged transition metal complexes have been found to serve as suitable precursors for the activation of small molecules without the use of reducing agents. In this study, we synthesized a dinuclear Mo2H8 complex supported by bulky C5H2tBu3 (Cp‡) ligands, Cp‡2Mo2H8 (1), from the reaction of Cp‡MoCl4 with KC8 under H2. The hydrides of complex 1 can be replaced with benzene at 60 °C to afford a μ-benzene complex Cp‡2Mo2H2(μ-C6H6) (2).
Collapse
Affiliation(s)
- Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Kodai Ishihara
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Moeko Yaoi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Japan
| | - W M C Sameera
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Roger E Cramer
- Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822-2275, USA
| |
Collapse
|
11
|
Tsukada S, Abe T, Abe N, Nakashima S, Yamamoto K, Gunji T. Benzenedithiolate-bridged MoFe complexes: structures, oxidation states, and reactivities. Dalton Trans 2020; 49:9048-9056. [DOI: 10.1039/d0dt01428a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The benzenedithiolate-bridged MoFe complexes were synthesized and the oxidation states of the metal centers elucidated.
Collapse
Affiliation(s)
- Satoru Tsukada
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Takayuki Abe
- Department of Pure and Applied Chemistry
- Faculty of Science and Technology
- Tokyo University of Science
- Chiba 278-8510
- Japan
| | - Naoya Abe
- Department of Pure and Applied Chemistry
- Faculty of Science and Technology
- Tokyo University of Science
- Chiba 278-8510
- Japan
| | - Satoru Nakashima
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
- Natural Science Centre for Basic Research and Development
| | - Kazuki Yamamoto
- Department of Pure and Applied Chemistry
- Faculty of Science and Technology
- Tokyo University of Science
- Chiba 278-8510
- Japan
| | - Takahiro Gunji
- Department of Pure and Applied Chemistry
- Faculty of Science and Technology
- Tokyo University of Science
- Chiba 278-8510
- Japan
| |
Collapse
|