1
|
Gries S, Brinker M, Zeller-Plumhoff B, Rings D, Krekeler T, Longo E, Greving I, Huber P. Wafer-Scale Fabrication of Hierarchically Porous Silicon and Silica by Active Nanoparticle-Assisted Chemical Etching and Pseudomorphic Thermal Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206842. [PMID: 36794297 DOI: 10.1002/smll.202206842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/19/2022] [Indexed: 06/02/2023]
Abstract
Many biological materials exhibit a multiscale porosity with small, mostly nanoscale pores as well as large, macroscopic capillaries to simultaneously achieve optimized mass transport capabilities and lightweight structures with large inner surfaces. Realizing such a hierarchical porosity in artificial materials necessitates often sophisticated and expensive top-down processing that limits scalability. Here, an approach that combines self-organized porosity based on metal-assisted chemical etching (MACE) with photolithographically induced macroporosity for the synthesis of single-crystalline silicon with a bimodal pore-size distribution is presented, i.e., hexagonally arranged cylindrical macropores with 1 µm diameter separated by walls that are traversed by pores 60 nm across. The MACE process is mainly guided by a metal-catalyzed reduction-oxidation reaction, where silver nanoparticles (AgNPs) serve as the catalyst. In this process, the AgNPs act as self-propelled particles that are constantly removing silicon along their trajectories. High-resolution X-ray imaging and electron tomography reveal a resulting large open porosity and inner surface for potential applications in high-performance energy storage, harvesting and conversion or for on-chip sensorics and actuorics. Finally, the hierarchically porous silicon membranes can be transformed structure-conserving by thermal oxidation into hierarchically porous amorphous silica, a material that could be of particular interest for opto-fluidic and (bio-)photonic applications due to its multiscale artificial vascularization.
Collapse
Affiliation(s)
- Stella Gries
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, Denickestr. 10, 21073, Hamburg, Germany
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Centre for Hybrid Nanostructures, CHyN, University of Hamburg, 22607, Hamburg, Germany
| | - Manuel Brinker
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, Denickestr. 10, 21073, Hamburg, Germany
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Centre for Hybrid Nanostructures, CHyN, University of Hamburg, 22607, Hamburg, Germany
| | - Berit Zeller-Plumhoff
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, 21502, Geesthacht, Germany
| | - Dagmar Rings
- Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Tobias Krekeler
- Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Elena Longo
- Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park, 34149, Basovizza, Italien
| | - Imke Greving
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of Materials Physics, Helmholtz Zentrum Hereon, 21502, Geesthacht, Germany
| | - Patrick Huber
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, Denickestr. 10, 21073, Hamburg, Germany
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Centre for Hybrid Nanostructures, CHyN, University of Hamburg, 22607, Hamburg, Germany
| |
Collapse
|
2
|
Bilo M, Münzner M, Küster C, Enke D, Lee YJ, Fröba M. Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation. Chemistry 2020; 26:11220-11230. [PMID: 32196769 PMCID: PMC7497150 DOI: 10.1002/chem.202000512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Indexed: 11/11/2022]
Abstract
Herein, it is reported how pseudomorphic transformation of divinylbenzene (DVB)-bridged organosilica@controlled pore glasses (CPG) offers the possibility to generate hierarchically porous organosilica/silica hybrid materials. CPG is utilized to provide granular shape/size and macroporosity and the macropores of the CPG is impregnated with organosilica phase, forming hybrid system. By subsequent pseudomorphic transformation, an ordered mesopore phase is generated while maintaining the granular shape and macroporosity of the CPG. Surface areas and mesopore sizes in the hierarchical structure are tunable by the choice of the surfactant and transformation time. Two-dimensional magic angle spinning (MAS) NMR spectroscopy demonstrated that micellar-templating affects both organosilica and silica phases and pseudomorphic transformation induces phase transition. A double-layer structure of separate organosilica and silica layers is established for the impregnated material, while a single monophase consisting of randomly distributed T and Q silicon species at the molecular level is identified for the pseudomorphic transformed materials.
Collapse
Affiliation(s)
- Malina Bilo
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Maximilian Münzner
- Institute of Chemical Technology, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Christian Küster
- Institute of Chemical Technology, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Dirk Enke
- Institute of Chemical Technology, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Young Joo Lee
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| |
Collapse
|