1
|
Suzuki W, Takahata R, Mizuhata Y, Tokitoh N, Xue S, Teranishi T. Quantitative analysis of air-oxidation reactions of thiolate-protected gold nanoclusters. Chem Sci 2024:d4sc02995j. [PMID: 39464616 PMCID: PMC11503621 DOI: 10.1039/d4sc02995j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
The interaction of dioxygen (O2) with inorganic nanomaterials is one of the most essential steps to understanding the reaction mechanism of O2-related reactions. However, quantitative analyses for O2-binding processes and subsequent oxidation reactions on the surface are still elusive, whereas the reaction of O2 with molecules such as transition metal complexes has been widely explored. Herein, we have quantitatively evaluated reaction processes of air-oxidation reactions of atomically precise thiolate-protected Au25 nanoclusters ([Au25(SR)18]-) as a model of O2 activation by inorganic nanomaterials. Kinetic analyses on the air-oxidation reaction of [Au25(SR)18]- revealed a controlling factor for O2-activation processes, which could be finely tunable by the protecting thiolate ligands.
Collapse
Affiliation(s)
- Wataru Suzuki
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
| | - Ryo Takahata
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
- Integrated Research Consortium on Chemical Sciences Uji Kyoto 611-0011 Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
- Integrated Research Consortium on Chemical Sciences Uji Kyoto 611-0011 Japan
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University 301 Xuefu Road Zhenjiang 212013 China
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
2
|
Suzuki W, Mizuhata Y, Tokitoh N, Teranishi T. Dioxygen Activation by Gold(I)-Distorted Porphyrin Dinuclear Complexes. Chemistry 2024; 30:e202401242. [PMID: 38888030 DOI: 10.1002/chem.202401242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Interactions between gold-based materials and dioxygen (O2) have motivated researchers to understand reaction mechanisms for O2 activation by homo- and heterogeneous gold catalysts. In this work, gold(I) porphyrin dinuclear complexes were synthesized with a saddle-distorted porphyrin ligand. The gold(I) porphyrin complexes showed unprecedented O2 activation in the presence of protic solvents to form gold(III) tetradentate porphyrin complexes. Mechanistic insights into the O2 activation by the gold(I) center were elucidated by spectroscopic measurements and theoretical calculations, revealing that dissociation of halides on the gold(I) center by alcohol solvents and hydrogen bonding of an N-H proton in the distorted porphyrin with dioxygen played important roles in establishing the unique reactivities of gold(I) complexes.
Collapse
Affiliation(s)
- Wataru Suzuki
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Engineering, University of Hyogo, 2167 Shosha Himeji, Hyogo, 671-2280, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
3
|
Ishizuka T, Grover N, Kingsbury CJ, Kotani H, Senge MO, Kojima T. Nonplanar porphyrins: synthesis, properties, and unique functionalities. Chem Soc Rev 2022; 51:7560-7630. [PMID: 35959748 DOI: 10.1039/d2cs00391k] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porphyrins are variously substituted tetrapyrrolic macrocycles, with wide-ranging biological and chemical applications derived from metal chelation in the core and the 18π aromatic surface. Under suitable conditions, the porphyrin framework can deform significantly from regular planar shape, owing to steric overload on the porphyrin periphery or steric repulsion in the core, among other structure modulation strategies. Adopting this nonplanar porphyrin architecture allows guest molecules to interact directly with an exposed core, with guest-responsive and photoactive electronic states of the porphyrin allowing energy, information, atom and electron transfer within and between these species. This functionality can be incorporated and tuned by decoration of functional groups and electronic modifications, with individual deformation profiles adapted to specific key sensing and catalysis applications. Nonplanar porphyrins are assisting breakthroughs in molecular recognition, organo- and photoredox catalysis; simultaneously bio-inspired and distinctly synthetic, these molecules offer a new dimension in shape-responsive host-guest chemistry. In this review, we have summarized the synthetic methods and design aspects of nonplanar porphyrin formation, key properties, structure and functionality of the nonplanar aromatic framework, and the scope and utility of this emerging class towards outstanding scientific, industrial and environmental issues.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Nitika Grover
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Mathias O Senge
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Lichtenbergstrasse 2a, 85748 Garching, Germany.
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
4
|
Pushpanandan P, Ravikanth M. Synthesis and Properties of Stable 20π Porphyrinoids. CHEM REC 2022; 22:e202200144. [PMID: 35896952 DOI: 10.1002/tcr.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Indexed: 11/09/2022]
Abstract
The 20π porphyrinoids are immediate higher homologues of 18π porphyrins and differ from porphyrins in aromaticity which in turn affects the structure, properties and chemical reactivities. Research over the years indicated that the 20π porphyrinoids can be stabilized as non-aromatic/anti-aromatic or Mobius aromatic macrocycles using different strategies such as core-modification of porphyrins, non-metal/metal complexation of porphyrins, peripheral modification of porphyrins and expanded porphyrinoids. The structural properties such as aromaticity of the macrocycle can be controlled by choosing the right synthetic strategy. This review will provide an overview of the development in the chemistry of 20π porphyrinoids giving emphasize on the synthesis, structure and electronic properties of these macrocycles which have huge potential for various applications.
Collapse
Affiliation(s)
- Poornenth Pushpanandan
- Department of Chemistry, Indian Institute of Technology Bombay, Macrocyclic Lab, Lab No. 338, 400076, Mumbai, India
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Macrocyclic Lab, Lab No. 338, 400076, Mumbai, India
| |
Collapse
|
5
|
Woods JF, Gallego L, Pfister P, Maaloum M, Vargas Jentzsch A, Rickhaus M. Shape-assisted self-assembly. Nat Commun 2022; 13:3681. [PMID: 35760814 PMCID: PMC9237116 DOI: 10.1038/s41467-022-31482-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Self-assembly and molecular recognition are critical processes both in life and material sciences. They usually depend on strong, directional non-covalent interactions to gain specificity and to make long-range organization possible. Most supramolecular constructs are also at least partially governed by topography, whose role is hard to disentangle. This makes it nearly impossible to discern the potential of shape and motion in the creation of complexity. Here, we demonstrate that long-range order in supramolecular constructs can be assisted by the topography of the individual units even in the absence of highly directional interactions. Molecular units of remarkable simplicity self-assemble in solution to give single-molecule thin two-dimensional supramolecular polymers of defined boundaries. This dramatic example spotlights the critical function that topography can have in molecular assembly and paves the path to rationally designed systems of increasing sophistication. Self-assembly and molecular recognition usually depend on strong, directional non-covalent interactions but also topography can play a role in the formation of supramolecular constructs which makes it nearly impossible to discern the potential of shape and motion in the creation of complexity. Here, the authors demonstrate that long-range order in supramolecular constructs can be assisted by the topography of the individual units even in the absence of highly directional interactions.
Collapse
Affiliation(s)
- Joseph F Woods
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Lucía Gallego
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Pauline Pfister
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Mounir Maaloum
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 67200, Strasbourg, France
| | - Andreas Vargas Jentzsch
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 67200, Strasbourg, France
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
6
|
|