1
|
Yoshino J, Hirono Y, Kaneda A, Hayashi N. Synthesis, structures, and solid-state photoresponsive color change behavior of boronium complexes bearing a pyridine-imine, diimine, or pyridine-ketone bidentate ligand. Dalton Trans 2023; 52:15017-15022. [PMID: 37812026 DOI: 10.1039/d3dt02332j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
9-Borabicyclo[3.3.1]nonane-based boronium triflates bearing a N-substituted 2-pyridylmethanimine, N,N'-dialkylethane-1,2-diimine, or 2-arylcarbonylpyridine ligand were synthesized. Their tetracoordinate boron structures were determined using 11B NMR spectra and X-ray crystallography. The pyridine-imine complexes exhibited solid-state photoresponsive color changes upon UV irradiation, which indicated that boronium complexes without a bipyridine moiety also have photoresponsive capabilities. Combination of TD-DFT calculations and measurements of UV-vis absorption and fluorescence properties, diffuse reflectance spectra, and ESR spectra provided suggestions on the determining factor of the photoresponsive color change capabilities and structures of the photoproducts.
Collapse
Affiliation(s)
- Junro Yoshino
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan.
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Yoshito Hirono
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Ayako Kaneda
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Naoto Hayashi
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan.
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| |
Collapse
|
2
|
Muñoz Sánchez GM, Zdilla MJ. Crystal structure of N-butyl-2,3-bis-(di-cyclo-hexyl-amino)-cyclo-propeniminium chloride benzene monosolvate. Acta Crystallogr E Crystallogr Commun 2022; 78:936-941. [PMID: 36072514 PMCID: PMC9443799 DOI: 10.1107/s2056989022008076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
N-Butyl-2,3-bis-(di-cyclo-hexyl-amino)-cyclo-propenimine (1) crystallizes from benzene and hexa-nes in the presence of HCl as a mono-benzene solvate of the hydro-chloride salt, [1H]Cl·C6H6 or C31H54N3 +·Cl-·C6H6, in the P21/n space group. The protonation of 1 results in the generation of an aromatic structure based upon the delocalization of the cyclo-propene double bond around the cyclo-propene ring, giving three inter-mediate C-C bond lengths of ∼1.41 Å, and the delocalization of the imine-type C-N double bond, giving three inter-mediate C-N bond lengths of ∼1.32 Å. Ion-ion and ion-benzene packing inter-actions are described and illustrated.
Collapse
Affiliation(s)
- Gaby M. Muñoz Sánchez
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
3
|
Umeno T, Seto R, Matsumoto S, Fujihara M, Karasawa S. Basic Fluorescent Protonation-Type pH Probe Sensitive to Small Δp Ka of Methanol and Ethanol. Anal Chem 2022; 94:10400-10407. [PMID: 35829731 DOI: 10.1021/acs.analchem.2c01415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An optical pH probe is a simple and effective tool for determining an accurate pH value in its localized area. However, basic pH probes with pKBH+ values above 8 have rarely been reported, although many components with high pKa such as arginine play important roles in vivo. Herein, we introduce novel colorimetric and fluorescent basic probes 1-5, which are designed using push-pull-type aminoquinoline and aminobenzoquinoline fluorophores, with pKBH+ values ranging from 8.4 to 9.9. After the basicity of the remarkably sensitive basic probe 4 was tuned, it was able to successfully distinguish between the pKa values of MeOH (15.5) and EtOH (15.9), thus displaying selective protonation and fluorescence enhancement in MeOH over EtOH. Our pH probes can be used to detect MeOH poisoning in commercial EtOH products such as hand sanitizers, providing an effective solution to this problem observed during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Remi Seto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Moeka Fujihara
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| |
Collapse
|
4
|
Smajlagic I, White B, Azeez O, Pilkington M, Dudding T. Organocatalysis Linked to Charge-Enhanced Acidity with Superelectrophilic Traits. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivor Smajlagic
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Brandon White
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Oyindamola Azeez
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| |
Collapse
|
5
|
Push–Pull Effect on the Gas-Phase Basicity of Nitriles: Transmission of the Resonance Effects by Methylenecyclopropene and Cyclopropenimine π-Systems Substituted by Two Identical Strong Electron Donors. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gas-phase basicity of nitriles can be enhanced by a push–pull effect. The role of the intercalated scaffold between the pushing group (electron-donor) and the pulling (electron-acceptor) nitrile group is crucial in the basicity enhancement, simultaneously having a transmission function and an intrinsic contribution to the basicity. In this study, we examine the methylenecyclopropene and the N-analog, cyclopropenimine, as the smallest cyclic π systems that can be considered for resonance propagation in a push–pull system, as well as their derivatives possessing two strong pushing groups (X) attached symmetrically to the cyclopropene scaffold. For basicity and push–pull effect investigations, we apply theoretical methods (DFT and G2). The effects of geometrical and rotational isomerism on the basicity are explored. We establish that the protonation of the cyano group is always favored. The push–pull effect of strong electron donor X substituents is very similar and the two π-systems appear to be good relays for this effect. The effects of groups in the two cyclopropene series are found to be proportional to the effects in the directly substituted nitrile series X–C≡N. In parallel to the basicity, changes in electron delocalization caused by protonation are also assessed on the basis of aromaticity indices. The calculated proton affinities of the nitrile series reported in this study enrich the gas-phase basicity scale of nitriles to around 1000 kJ mol−1.
Collapse
|
6
|
Vazdar K, Margetić D, Kovačević B, Sundermeyer J, Leito I, Jahn U. Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality. Acc Chem Res 2021; 54:3108-3123. [PMID: 34308625 DOI: 10.1021/acs.accounts.1c00297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ConspectusOne of the constant challenges of synthetic chemistry is the molecular design and synthesis of nonionic, metal-free superbases as chemically stable neutral organic compounds of moderate molecular weight, intrinsically high thermodynamic basicity, adaptable kinetic basicity, and weak or tunable nucleophilicity at their nitrogen, phosphorus, or carbon basicity centers. Such superbases can catalyze numerous reactions, ranging from C-C bond formation to cycloadditions and polymerization, to name just a few. Additional benefits of organic superbases, as opposed to their inorganic counterparts, are their solubility in organic reaction media, mild reaction conditions, and higher selectivity. Approaching such superbasic compounds remains a continuous challenge. However, recent advances in synthetic methodology and theoretical understanding have resulted in new design principles and synthetic strategies toward superbases. Our computational contributions have demonstrated that the gas-phase basicity region of 350 kcal mol-1 and even beyond is easily reachable by organosuperbases. However, despite record-high basicities, the physical limitations of many of these compounds become quickly evident. The typically large molecular weight of these molecules and their sensitivity to ordinary reaction conditions prevent them from being practical, even though their preparation is often not too difficult. Thus, obviously structural limitations with respect to molecular weight and structural complexity must be imposed on the design of new synthetically useful organic superbases, but strategies for increasing their basicity remain important.The contemporary design of novel organic superbases is illustrated by phosphazenyl phosphanes displaying gas-phase basicities (GB) above 300 kcal mol-1 but having molecular weights well below 1000 g·mol-1. This approach is based on a reconsideration of phosphorus(III) compounds, which goes along with increasing their stability in solution. Another example is the preparation of carbodiphosphoranes incorporating pyrrolidine, tetramethylguanidine, or hexamethylphosphazene as a substituent. With gas-phase proton affinities of up to 300 kcal mol-1, they are among the top nonionic carbon bases on the basicity scale. Remarkably, the high basicity of these compounds is achieved at molecular weights of around 600 g·mol-1. Another approach to achieving high basicity through the cooperative effect of multiple intramolecular hydrogen bonding, which increases the stabilization of conjugate acids, has recently been confirmed.This Account focuses on our efforts to produce superbasic molecules that embody many desirable traits, but other groups' approaches will also be discussed. We reveal the crucial structural features of superbases and place them on known basicity scales. We discuss the emerging potential and current limits of their application and give a general outlook into the future.
Collapse
Affiliation(s)
- Katarina Vazdar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, v.v.i. Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | - Jörg Sundermeyer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, v.v.i. Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
7
|
Guanidine-Amide-Catalyzed Aza-Henry Reaction of Isatin-Derived Ketimines: Origin of Selectivity and New Catalyst Design. Molecules 2021; 26:molecules26071965. [PMID: 33807341 PMCID: PMC8037019 DOI: 10.3390/molecules26071965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/05/2022] Open
Abstract
Density functional theory (DFT) calculations were performed to investigate the mechanism and the enantioselectivity of the aza-Henry reaction of isatin-derived ketimine catalyzed by chiral guanidine–amide catalysts at the M06-2X-D3/6-311+G(d,p)//M06-2X-D3/6-31G(d,p) (toluene, SMD) theoretical level. The catalytic reaction occurred via a three-step mechanism: (i) the deprotonation of nitromethane by a chiral guanidine–amide catalyst; (ii) formation of C–C bonds; (iii) H-transfer from guanidine to ketimine, accompanied with the regeneration of the catalyst. A dual activation model was proposed, in which the protonated guanidine activated the nitronate, and the amide moiety simultaneously interacted with the ketimine substrate by intermolecular hydrogen bonding. The repulsion of CPh3 group in guanidine as well as N-Boc group in ketimine raised the Pauli repulsion energy (∆EPauli) and the strain energy (∆Estrain) of reacting species in the unfavorable si-face pathway, contributing to a high level of stereoselectivity. A new catalyst with cyclopropenimine and 1,2-diphenylethylcarbamoyl as well as sulfonamide substituent was designed. The strong basicity of cyclopropenimine moiety accelerated the activation of CH3NO2 by decreasing the energy barrier in the deprotonation step. The repulsion between the N-Boc group in ketimine and cyclohexyl group as well as chiral backbone in the new catalyst raised the energy barrier in C–C bond formation along the si-face attack pathway, leading to the formation of R-configuration product. A possible synthetic route for the new catalyst is also suggested.
Collapse
|
8
|
Guest M, Mir R, Foran G, Hickson B, Necakov A, Dudding T. Trisaminocyclopropenium Cations as Small-Molecule Organic Fluorophores: Design Guidelines and Bioimaging Applications. J Org Chem 2020; 85:13997-14011. [PMID: 32930593 DOI: 10.1021/acs.joc.0c02026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The discovery of fluorescence two centuries ago ushered in, what is today, an illuminating field of science rooted in the rational design of photochromic molecules for task-specific bio-, material-, and medical-driven applications. Today, this includes applications in bioimaging and diagnosis, photodynamic therapy regimes, in addition to photovoltaic devices and solar cells, among a vast multitude of other usages. In furthering this indispensable area of daily life and modern-day scientific research, we report herein the synthesis of a class of trisaminocyclopropenium fluorophores along with a systematic investigation of their unique molecular and electronic dependent photophysical properties. Among these fluorophores, tris[N(naphthalen-2-ylmethyl)phenylamino] cyclopropenium chloride (TNTPC) displayed a strong photophysical profile including a 0.92 quantum yield ascribed to intramolecular charge transfer and intramolecular through-space conjugation. Moreover, this cyclopropenium-based fluorophore functions as a competent imaging agent for DNA visualization and nuclear counterstaining in cell culture. To facilitate the broader use of these compounds, design principles supported by density functional theory calculations for engineering analogs of this class of fluorophores are offered. Collectively, this study adds to the burgeoning interest in cyclopropenium compounds and their unique properties as fluorophores with uses in bioimaging applications.
Collapse
Affiliation(s)
- Matt Guest
- Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Roya Mir
- Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Gregory Foran
- Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Brianne Hickson
- Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Aleksandar Necakov
- Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Travis Dudding
- Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|