1
|
Chatani N. Nickel-Catalyzed Functionalization Reactions Involving C-H Bond Activation via an Amidate-Promoted Strategy and Its Extension to the Activation of C-F, C-O, C-S, and C-CN Bonds. Acc Chem Res 2023; 56:3053-3064. [PMID: 37820051 DOI: 10.1021/acs.accounts.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
ConspectusThe development of functionalization reactions involving the activation of C-H bonds has evolved extensively due to the atom and step economy associated with such reactions. Among these reactions, chelation assistance has been shown to provide a powerful solution to the serious issues of reactivity and regioselectivity faced in the activation of C-H bonds. The vast majority of C-H functionalization reactions reported thus far has involved the use of precious metals. Kleiman and Dubeck reported the cyclonickelation of azobenzene and NiCp2 in which an azo group directs a Ni center to activate the ortho C-H bond in close proximity. Although this stoichiometric reaction was discovered earlier than that for other transition-metal complexes, its development as a catalytic reaction was delayed. No general catalytic systems were available for Ni-catalyzed C-H functionalization reactions for a long time. This Account details our group's development of Ni(0)- and Ni(II)-catalyzed chelation-assisted C-H functionalization reactions. It also highlights how the new strategy can be extended to the activation of other unreactive bonds.In the early 2010s, we found that the Ni(0)-catalyzed reaction of aromatic amides that contain a 2-pyridinylmethylamine moiety as a directing group with alkynes results in C-H/N-H oxidative annulation to give isoquinolinones. In addition, the combination of a Ni(II) catalyst and an 8-aminoquinoline directing group was found to be a superior combination for developing a wide variety of C-H functionalization reactions with various electrophiles. The reactions were proposed to include the formation of unstable Ni(IV) and/or Ni(III) species; the generation of such high-valence Ni species was rare at that time, but since then, many papers dealing with DFT and organometallic studies have appeared in the literature in attempts to understand the mechanism. Based on our in-depth considerations of the mechanism with respect to why an N,N-bidentate directing group is required, we realized that the formation of a N-Ni bond by the oxidative addition of a N-H bond to a Ni(0) species or a ligand exchange between a N-H bond and Ni(II) species is the key step. We concluded that the precoordination of the N(sp2) atom in the directing group positions the Ni species to be in close proximity to the N-H bond which permits the formation of a N-Ni bond. Based on this working hypothesis, we carried out the reaction using KOtBu as a base and found that the Ni(0)-catalyzed reaction of aromatic amides that do not contain such a specific directing group with alkynes results in the formation of the desired isoquinolinone, in which an amidate anion acts as the actual directing group. Remarkably, this strategy was found to be applicable to the activation of various other unreactive bonds such as C-F, C-O, C-S, and C-CN.
Collapse
Affiliation(s)
- Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, and Research Center for Environmental Preservation, Osaka University, 565-0871 Osaka Japan
| |
Collapse
|
2
|
Xiang H, He J, Qian W, Qiu M, Xu H, Duan W, Ouyang Y, Wang Y, Zhu C. Electroreductively Induced Radicals for Organic Synthesis. Molecules 2023; 28:857. [PMID: 36677915 PMCID: PMC9866059 DOI: 10.3390/molecules28020857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Organic electrochemistry has attracted tremendous interest within the novel sustainable methodologies that have not only reduced the undesired byproducts, but also utilized cleaner and renewable energy sources. Particularly, oxidative electrochemistry has gained major attention. On the contrary, reductive electrolysis remains an underexplored research direction. In this context, we discuss advances in transition-metal-free cathodically generated radicals for selective organic transformations since 2016. We highlight the electroreductive reaction of alkyl radicals, aryl radicals, acyl radicals, silyl radicals, fluorosulfonyl radicals and trifluoromethoxyl radicals.
Collapse
Affiliation(s)
| | | | | | - Mingqiang Qiu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | | | | | | | | | - Cuiju Zhu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
3
|
Wu W, Zhao X, Chen G, Liu L, Li Y, Chen T, James TD, Liu Y. Overlooked potential of N, N-bidentate directing-groups in Ni-catalyzed C-H functionalization of benzamides. Chem Commun (Camb) 2023; 59:482-485. [PMID: 36530042 DOI: 10.1039/d2cc06177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Ni-catalyzed reactions of benzamides with bicyclic alkenes were explored using DFT calculations. An unprecedented "N-H deprotonation circumvented" catalytic mechanism was proposed, over the more common N-H/C-H activation mechanism, in which (i) the circumvention of N-H deprotonation ensures the presence of N-H⋯O hydrogen bond interaction, thereby stabilizing the critical ortho-C-H functionalization TS; and (ii) the N-H moiety retention results in a weak N⋯Ni σ-coordination, which is flexible to the configurational conversion during the key alkene insertion. These overlooked aspects of the functionalized N,N-bidentate directing groups will aid the design of new related catalytic reactions.
Collapse
Affiliation(s)
- Weirong Wu
- School of Environment and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Lingjun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resuorces, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, Qinghai, P. R. China
| | - Tao Chen
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resuorces, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, Qinghai, P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yuxia Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China.
| |
Collapse
|
4
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
5
|
Milbauer MW, Kampf JW, Sanford MS. Nickel(IV) Intermediates in Aminoquinoline-Directed C(sp 2)–C(sp 3) Coupling. J Am Chem Soc 2022; 144:21030-21034. [DOI: 10.1021/jacs.2c10778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael W. Milbauer
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Arepally S, Nandhakumar P, González-Montiel GA, Dzhaparova A, Kim G, Ma A, Nam KM, Yang H, Ha-Yeon Cheong P, Park JK. Unified Electrochemical Synthetic Strategy for [2 + 2 + 2] Cyclotrimerizations: Construction of 1,3,5- and 1,2,4-Trisubstituted Benzenes from Ni(I)-Mediated Reduction of Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sagar Arepally
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ponnusamy Nandhakumar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | | | - Alina Dzhaparova
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Gyeongho Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ahyeon Ma
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ki Min Nam
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, Corvallis 97331, United States
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
7
|
Jiang C, Liu K, Zhang L, Liu T, Zhang N, Xu Y. Ni(II) Salt-catalyzed Direct Aryl Thioetherification of 1-Naphthylamine and its Derivative with Disulfides. CHEM LETT 2022. [DOI: 10.1246/cl.220168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Chunfeng Jiang
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
- Liaoning Institute of Science and Technology, Benxi 117004, P.R.China
| | - Kaixuan Liu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
| | - Le Zhang
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
| | - Tian Liu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
| | - Nan Zhang
- Liaoning Institute of Science and Technology, Benxi 117004, P.R.China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, P. R.China
| |
Collapse
|
8
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
9
|
Kuciński K, Simon H, Ackermann L. Rhoda-Electrocatalyzed C-H Methylation and Paired Electrocatalyzed C-H Ethylation and Propylation. Chemistry 2022; 28:e202103837. [PMID: 34714563 PMCID: PMC9299020 DOI: 10.1002/chem.202103837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/18/2022]
Abstract
The use of electricity over traditional stoichiometric oxidants is a promising strategy for sustainable molecular assembly. Herein, we describe the rhoda-electrocatalyzed C-H activation/alkylation of several N-heteroarenes. This catalytic approach has been successfully applied to several arenes, including biologically relevant purines, diazepam, and amino acids. The versatile C-H alkylation featured water as a co-solvent and user-friendly trifluoroborates as alkylating agents. Finally, the rhoda-electrocatalysis with unsaturated organotrifluoroborates proceeded by paired electrolysis.
Collapse
Affiliation(s)
- Krzysztof Kuciński
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Hendrik Simon
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
10
|
Ma Y, Hong J, Yao X, Liu C, Zhang L, Fu Y, Sun M, Cheng R, Li Z, Ye J. Aminomethylation of Aryl Bromides by Nickel-Catalyzed Electrochemical Redox Neutral Cross Coupling. Org Lett 2021; 23:9387-9392. [PMID: 34881901 DOI: 10.1021/acs.orglett.1c03500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We develop an electrochemical nickel-catalyzed aminomethylation of aryl bromides under mild conditions. The convergent paired electrolysis makes full use of anode and cathode processes, free of a terminal oxidant, a sacrificial anode, a metal reductant, and a prefunctionalized radical precursor. In addition, this method exhibits wide functional group tolerance (63 examples), including some sensitive substituents and aromatic heterocycles. This redox neutral cross coupling provides a more environmentally friendly and synthetic practical protocol for forging C(sp2)-C(sp3) bonds.
Collapse
Affiliation(s)
- Yueyue Ma
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jufei Hong
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiantong Yao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chengyu Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ling Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Youtian Fu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Maolin Sun
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Cheng
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Mantry L, Maayuri R, Kumar V, Gandeepan P. Photoredox catalysis in nickel-catalyzed C-H functionalization. Beilstein J Org Chem 2021; 17:2209-2259. [PMID: 34621388 PMCID: PMC8451005 DOI: 10.3762/bjoc.17.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
Catalytic C‒H functionalization has become a powerful strategy in organic synthesis due to the improved atom-, step- and resource economy in comparison with cross-coupling or classical organic functional group transformations. Despite the significant advances in the metal-catalyzed C‒H activations, recent developments in the field of metallaphotoredox catalysis enabled C‒H functionalizations with unique reaction pathways under mild reaction conditions. Given the relative earth-abundance and cost-effective nature, nickel catalysts for photoredox C‒H functionalization have received significant attention. In this review, we highlight the developments in the field of photoredox nickel-catalyzed C‒H functionalization reactions with a range of applications until summer 2021.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Vikash Kumar
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
12
|
Durandetti M. Synthetic Applications of Nickel-Catalyzed Cross-Coupling and Cyclisation Reactions. CHEM REC 2021; 21:3746-3757. [PMID: 34145729 DOI: 10.1002/tcr.202100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Indexed: 11/12/2022]
Abstract
Since the first studies about fifty years ago, the direct formation of C-C bonds, catalyzed by nickel complexes, has appeared as an important research topic, and has re-emerged recently as a renewal of nickel chemistry. This account provides a summary of the use of nickel complexes in catalysis, and highlights the evolution of our own research.
Collapse
Affiliation(s)
- Muriel Durandetti
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000, Rouen, France
| |
Collapse
|
13
|
Déjardin C, Renou A, Maddaluno J, Durandetti M. Nickel-Catalyzed Electrochemical Cyclization of Alkynyl Aryl Iodide and the Domino Reaction with Aldehydes. J Org Chem 2021; 86:8882-8890. [PMID: 34115504 DOI: 10.1021/acs.joc.1c00811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An intramolecular carbometallation of a triple bond promoted by electrochemistry and mediated by nickel catalysis is described. This domino process transforms various aryl halides bearing a propargyl chain into substituted heterocycles in one single operation, with high stereoselectivities and in good to high yields. This reaction, characterized by a cyclic voltammetry set of experiments, proceeds following a syn-exo-dig cyclization process. When run at 80 °C, vinylbenzofuranes that are suitable substrates for cycloaddition reactions are obtained.
Collapse
Affiliation(s)
- Claire Déjardin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| | - Amaury Renou
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| | - Jacques Maddaluno
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| | - Muriel Durandetti
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| |
Collapse
|
14
|
Samanta RC, Ackermann L. Evolution of Earth-Abundant 3 d-Metallaelectro-Catalyzed C-H Activation: From Chelation-Assistance to C-H Functionalization without Directing Groups. CHEM REC 2021; 21:2430-2441. [PMID: 34028175 DOI: 10.1002/tcr.202100096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023]
Abstract
Catalyzed C-H functionalizations have emerged as a transformative platform for molecular syntheses. Despite of indisputable advances, oxidative C-H activations have been largely restricted to precious transition metals and stoichiometric amounts of chemical oxidants. In contrast, we herein discuss the potential of earth-abundant, environmentally-benign 3d transition metals for C-H activation, which has recently gained major momentum. Thus, a strategy for full resource economy has been established in our group, with green electricity as a renewable redox agent, giving valuable hydrogen as the sole byproduct under redox mediator-free conditions. In this account, we detail our accomplishments in 3d metallaelectrocatalysis towards green syntheses until March 2021.
Collapse
Affiliation(s)
- Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
15
|
|
16
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
17
|
|
18
|
Ang NWJ, Ackermann L. Electroreductive Nickel-Catalyzed Thiolation: Efficient Cross-Electrophile Coupling for C-S Formation. Chemistry 2021; 27:4883-4887. [PMID: 33370483 PMCID: PMC7986068 DOI: 10.1002/chem.202005449] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Sulfur-containing molecules are of utmost topical importance towards the effective development of pharmaceuticals and functional materials. Herein, we present an efficient and mild electrochemical thiolation by cross-electrophile coupling of alkyl bromides with functionalized bench-stable thiosulfonates to access alkyl sulfides with excellent efficacy and broad functional group tolerance. Cyclic voltammetry and potentiostatic analysis were performed to elucidate mechanistic insights into this electrocatalytic thiolation reaction.
Collapse
Affiliation(s)
- Nate W. J. Ang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
19
|
Zhong JS, Yu Y, Shi Z, Ye KY. An electrochemical perspective on the roles of ligands in the merger of transition-metal catalysis and electrochemistry. Org Chem Front 2021. [DOI: 10.1039/d0qo01227k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perspective on the roles of ligands in transition-metal catalysis under electrochemical conditions is provided.
Collapse
Affiliation(s)
- Jun-Song Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Zhaojiang Shi
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| |
Collapse
|
20
|
Dhawa U, Kaplaneris N, Ackermann L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00727k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sustainable strategies for the activation of inert C–H bonds towards improved resource-economy.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
21
|
|
22
|
Abstract
The renewed interest in electrosynthesis demonstrated by organic chemists in the last years has allowed for rapid development of new methodologies. In this review, advances in enantioselective electrosynthesis that rely on catalytic amounts of organic or metal-based chiral mediators are highlighted with focus on the most recent developments up to July 2020. Examples of C-H functionalization, alkene functionalization, carboxylation and cross-electrophile couplings are discussed, along with their related mechanistic aspects.
Collapse
|
23
|
Samanta RC, Meyer TH, Siewert I, Ackermann L. Renewable resources for sustainable metallaelectro-catalysed C-H activation. Chem Sci 2020; 11:8657-8670. [PMID: 34123124 PMCID: PMC8163351 DOI: 10.1039/d0sc03578e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The necessity for more sustainable industrial chemical processes has internationally been agreed upon. During the last decade, the scientific community has responded to this urgent need by developing novel sustainable methodologies targeted at molecular transformations that not only produce reduced amounts of byproducts, but also by the use of cleaner and renewable energy sources. A prime example is the electrochemical functionalization of organic molecules, by which toxic and costly chemicals can be replaced by renewable electricity. Unrivalled levels of resource economy can thereby be achieved via the merger of metal-catalyzed C-H activation with electrosynthesis. This perspective aims at highlighting the most relevant advances in metallaelectro-catalysed C-H activations, with a particular focus on the use of green solvents and sustainable wind power and solar energy until June 2020.
Collapse
Affiliation(s)
- Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Inke Siewert
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|