1
|
Sim J, K P S, Lee A. Visible Light-Mediated Selective Synthesis of β-Amino Sulfide Scaffolds via Dual Role of N-Iodosuccinimide. Org Lett 2025; 27:2687-2692. [PMID: 40047582 DOI: 10.1021/acs.orglett.5c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The synthesis of β-amino sulfides is significant in organic chemistry. However, challenges such as achieving regioselectivity and the limited availability of starting materials remain unresolved. In this study, we present a visible light-mediated method for the selective synthesis of β-amino sulfide scaffolds. Remarkably, two distinct types of β-amino sulfides were selectively synthesized through the dual role of N-iodosuccinimide, which functions as either a reactant or an activator in the construction of the target scaffolds.
Collapse
|
2
|
Ma X, Zhu Y, Chen Y, Yan X, Zhang M. TM-free full utilization of S atoms: synthesis of thioethers from disulfides and quaternary ammonium salts. Org Biomol Chem 2025. [PMID: 40110641 DOI: 10.1039/d5ob00011d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Disulfides are commonly used as alternatives of thiols; however, the full utilization of both S atoms of disulfides under TM-, oxidant/reductant-free conditions is still challenging. In this study, an efficient synthesis of thioethers from disulfides and quaternary ammonium salts under TM-, oxidant/reductant-free conditions has been developed. Both S atoms of disulfides can be transformed into thioether products, thus improving sulfur resource utilization. The method can be easily extended to the synthesis of valuable alkyl dithiocarbamates and can be readily scaled up to the gram scale, showing good practicality value.
Collapse
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yingying Zhu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yuying Chen
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Xiaoyu Yan
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Mengcheng Zhang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| |
Collapse
|
3
|
Paul S, Biswas S, Choudhuri T, Bandyopadhyay S, Mandal S, Bagdi AK. I 2-Catalyzed Cascade Annulation/Cross-Dehydrogenative Coupling: Excellent Platform to Access 3-Sulfenyl Pyrazolo[1,5- a]pyrimidines with Potent Antibacterial Activity against Pseudomonas aeruginosa and Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2025. [PMID: 40105898 DOI: 10.1021/acsabm.5c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The increasing resistance of bacteria to antibiotics has become a serious threat to existing options for treating bacterial infections. We have developed a synthetic methodology for 3-sulfenyl pyrazolo[1,5-a]pyrimidines with potent antibacterial activity. This iodine-catalyzed strategy has been developed by employing amino pyrazoles, enaminones/chalcones, and thiophenols through intermolecular cyclization and subsequent cross-dehydrogenative sulfenylation. This highly regioselective and practicable protocol has been utilized to synthesize structurally diverse 3-sulfenyl pyrazolo[1,5-a]pyrimidines with wide functionalities. This strategy is also extendable toward the synthesis of bis(pyrazolo[1,5-a]pyrimidin-3-yl)sulfanes from amino pyrazole, enaminones/chalcone, and KSCN and the synthesis of 3-sulfenyl pyrazolo[1,5-a]pyrimidine from direct acetophenone. Mechanistic investigation disclosed a radical pathway for C-H sulfenylation and the involvement of 3-iodo pyrazolo[1,5-a]pyrimidine as the active intermediate. The biological investigation disclosed the potent antibacterial activity of sulfenyl pyrazolo[1,5-a]pyrimidines against Pseudomonas aeruginosa and Staphylococcus aureus, whereas pyrazolo[1,5-a]pyrimidine and sulfinyl pyrazolo[1,5-a]pyrimidine have no such antibacterial activity. Sulfenyl pyrazolo[1,5-a]pyrimidines mechanistically inhibited bacterial growth by the accumulation of ROS as well as induction in lipid peroxidation. Subsequently, such circumstances changed the membrane potential and facilitated the interaction with membrane-associated proteins, leading to a loss in membrane integrity and damage to bacterial cell membranes. Moreover, these derivatives potentiated the antibacterial efficacy of the commercial antibiotic ciprofloxacin against the selected bacterial strains and can be considered an alternative therapy against these bacterial infections.
Collapse
Affiliation(s)
- Suvam Paul
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Samik Biswas
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | | | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Avik Kumar Bagdi
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| |
Collapse
|
4
|
Gómez-Mudarra FA, Aullón G, Jover J. Exploring nickel-catalyzed organochalcogen synthesis via cross-coupling of benzonitrile and alkyl chalcogenols with computational tools. Org Biomol Chem 2025; 23:1673-1682. [PMID: 39783826 DOI: 10.1039/d4ob01865f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The preparation of organochalcogens has increased in recent times due to their promising biological activity properties. This work studies the reaction mechanism of a nickel(0)-catalyzed cross-coupling between benzonitrile and propanethiol to produce new C-S bonds by computational means. The proposed mechanism follows the classical oxidative addition/transmetalation/reductive elimination cross-coupling sequence, involving an unusual oxidative addition of a Ph-CN bond onto the active species. The computed catalytic cycle for thioether synthesis has been examined to determine whether the same protocol could be employed to build the analogous C-Se and C-Te bonds. The proposed mechanism for C-S coupling is validated by microkinetic modeling and shows a very good agreement with available experimental data. The extension of the proposed mechanism to C-Se and C-Te couplings indicates that these new reactions should be operative, although their reaction rates appear to be significantly slower.
Collapse
Affiliation(s)
- Francisco A Gómez-Mudarra
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Gabriel Aullón
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
5
|
Rai A, Prabhakar NS, Kishor K, Singh KN. Iodine/DMF-Mediated Regioselective Sulfenylation Using Arenediazonium Tosylates and Sodium Metabisulfite: An Easy Access to 3-Arylthioindoles. J Org Chem 2024; 89:15075-15082. [PMID: 39381884 DOI: 10.1021/acs.joc.4c01819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A practical C3 sulfenylation of indoles has been accomplished using arenediazonium tosylates and sodium metabisulfite, with a key role of iodine/DMF combination in the reaction. The method involves scarce use of sodium metabisulfite as a divalent sulfur source and offers an array of structurally diverse 3-arylthioindoles in high yields under operationally simple transition-metal-free and mild conditions.
Collapse
Affiliation(s)
- Aditya Rai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Neha Sharma Prabhakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Kaushal Kishor
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
6
|
Miyake H, Ishige N, Okai H, Iida H. Aerobic oxidative C-C bond formation through C-H bond activation catalysed by flavin and iodine. Org Biomol Chem 2024; 22:7736-7742. [PMID: 39229653 DOI: 10.1039/d4ob01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We report a metal/light-free aerobic oxidative C-C bond formation using sp3 C-H bond activation of tetrahydroisoquinolines catalyzed by flavin and iodine. The dual catalytic system enabled the oxidative Mannich and aza-Henry reactions by the cross-dehydrogenative coupling between two sp3 C-H bonds. Furthermore, the flavin-iodine-coupled catalysis was applied to the synthesis of pyrrolo[2,1-a]isoquinolines through the sequential oxidative 1,3-dipolar cycloaddition and dehydrogenative aromatization. The biomimetic flavin catalysis efficiently activates molecular oxygen; thus the non-metal dual catalytic system enables green oxidative transformation using molecular oxygen as an environmentally friendly terminal oxidant which generates benign water.
Collapse
Affiliation(s)
- Hazuki Miyake
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Nico Ishige
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
7
|
Chen W, Wang W, Wu R, Zhou H, Yu P. Intermolecular Sulfenoamination of Alkenes with Free-Thiols and NIS to Access β-Succinimide Sulfides. Chem Asian J 2024:e202400945. [PMID: 39233481 DOI: 10.1002/asia.202400945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
A convenient and practical multicomponent strategy for the sulfenoamination of alkenes was realized, which using free-thiols as the sulfur-reagent, NIS both as radical initiator and an N-nucleophile. This protocol excellent in terms of transition-metal-free, good functional group tolerance, easily available substrates and facile scale-up. And provided a direct- and general way to synthesize various β-succinimide sulfides with high regioselectivity.
Collapse
Affiliation(s)
- Wei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Wanxiang Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Run Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Haiping Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Pingbing Yu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
8
|
Zarougui S, Er-Rajy M, Faris A, Imtara H, El fadili M, Qurtam AA, Nasr FA, Al-Zharani M, Elhallaoui M. 3D computer modeling of inhibitors targeting the MCF-7 breast cancer cell line. Front Chem 2024; 12:1384832. [PMID: 38887699 PMCID: PMC11181028 DOI: 10.3389/fchem.2024.1384832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
This study focused on developing new inhibitors for the MCF-7 cell line to contribute to our understanding of breast cancer biology and various experimental techniques. 3D QSAR modeling was used to design new tetrahydrobenzo[4, 5]thieno[2, 3-d]pyrimidine derivatives with good characteristics. Two robust 3D-QSAR models were developed, and their predictive capacities were confirmed through high correlations [CoMFA (Q2 = 0.62, R 2 = 0.90) and CoMSIA (Q2 = 0.71, R 2 = 0.88)] via external validations (R2 ext = 0.90 and R2 ext = 0.91, respectively). These successful evaluations confirm the potential of the models to provide reliable predictions. Six candidate inhibitors were discovered, and two new inhibitors were developed in silico using computational methods. The ADME-Tox properties and pharmacokinetic characteristics of the new derivatives were evaluated carefully. The interactions between the new tetrahydrobenzo[4, 5]thieno[2, 3-d]pyrimidine derivatives and the protein ERα (PDB code: 4XO6) were highlighted by molecular docking. Additionally, MM/GBSA calculations and molecular dynamics simulations provided interesting information on the binding stabilities between the complexes. The pharmaceutical characteristics, interactions with protein, and stabilities of the inhibitors were examined using various methods, including molecular docking and molecular dynamics simulations over 100 ns, binding free energy calculations, and ADME-Tox predictions, and compared with the FDA-approved drug capivasertib. The findings indicate that the inhibitors exhibit significant binding affinities, robust stabilities, and desirable pharmaceutical characteristics. These newly developed compounds, which act as inhibitors to mitigate breast cancer, therefore possess considerable potential as prospective drug candidates.
Collapse
Affiliation(s)
- Sara Zarougui
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Er-Rajy
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdelmoujoud Faris
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hamada Imtara
- Faculty of Medicine, Arab American University Palestine, Jenin, Palestine
| | - Mohamed El fadili
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ashraf Ahmed Qurtam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Menana Elhallaoui
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
9
|
Ito K, Nakamura K, Yoshida K. Synthesis of [1]Benzothieno[3,2-b][1]benzothiophenes through Iodine-Mediated Sulfur Insertion Reaction. Chemistry 2024; 30:e202400220. [PMID: 38320966 DOI: 10.1002/chem.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
[1]Benzothieno[3,2-b][1]benzothiophenes (BTBTs) are important molecules that have been extensively studied as high-performance organic field-effect transistors (OFETs). Therefore, it is important to develop a simple synthetic method for these molecules. In this paper, a synthetic method to obtain the BTBTs from 2-arylbenzo[b]thiophenes and elemental sulfur, in which two C-S bonds are formed at once, is described. In this method, molecular iodine plays a very important role as an additive. The role of iodine is discussed in the presumed reaction pathways.
Collapse
Affiliation(s)
- Kazuki Ito
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kohei Nakamura
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kazuhiro Yoshida
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
10
|
Singhal R, Choudhary SP, Malik B, Pilania M. I 2/DMSO-mediated oxidative C-C and C-heteroatom bond formation: a sustainable approach to chemical synthesis. RSC Adv 2024; 14:5817-5845. [PMID: 38362068 PMCID: PMC10866128 DOI: 10.1039/d3ra08685b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
The I2/DMSO pair has emerged as a versatile, efficient, practical, and eco-friendly catalyst system, playing a significant role as a mild oxidative system, and thus employed as a good alternative to metal catalysts in synthetic chemistry. Presently, I2/DMSO is a thriving catalytic system that is used in preparing C-C and C-X (X = O/S/N/Se/Cl/Br) bonds, resulting in the formation of various bioactive molecules. Many processes utilize this system, including in situ glyoxal synthesis by diverse sp, sp2, and sp3 functionalities via iodination and subsequent Kornblum oxidation. Focusing on oxidation processes, this study examines the synergistic effect of dimethyl sulfoxide (DMSO) and molecular iodine in improving synthetic techniques. We provide a comprehensive overview of the research progress on the I2/DMSO catalytic system for the formation of C-C and C-heteroatom bonds from 2018 to the present. Additionally, the future prospects of this research field are discussed.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur 303007 Rajasthan India
| | - Satya Prakash Choudhary
- Department of Chemistry, Manipal University Jaipur VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur 303007 Rajasthan India
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur 303007 Rajasthan India
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way Jaipur 303007 Rajasthan India
| |
Collapse
|
11
|
Wang CS, Xu Y, Wang SP, Zheng CL, Wang G, Sun Q. Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp 2)-H and C(sp 3)-H bonds. Org Biomol Chem 2024; 22:645-681. [PMID: 38180073 DOI: 10.1039/d3ob01847d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore.
| | - Shao-Peng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| |
Collapse
|
12
|
Mou D, Wu Y, Wang L, Fu Y, Du Z. Synthesis of α-sulfenylated carbonyl compounds under metal-free conditions. Org Biomol Chem 2024; 22:274-278. [PMID: 38054500 DOI: 10.1039/d3ob01796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
An efficient synthesis of α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols under heating conditions is described. The method is characterized by mild conditions, simple operation, metal-free catalysis and good functional group tolerance. Mechanistic studies suggest that the reaction involves a radical pathway and an isomerization process.
Collapse
Affiliation(s)
- Dan Mou
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yuanyuan Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Linda Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
13
|
Suresh S, Chien HS, Chen CH, Tsai HY, Chung DR, Kavala V, Yao CF. Iodine-Catalyzed Regioselective Synthesis of Diphenyl-Substituted Carbazoles via [4 + 2] Annulation of β-Formyl Ketones with Indoles. J Org Chem 2023. [PMID: 38032287 DOI: 10.1021/acs.joc.3c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The [4 + 2] annulation of β-formyl ketones with an indole has been developed for the regioselective synthesis of diphenyl-substituted carbazoles in the presence of a catalytic amount of iodine. The 1,4-dicarbonyl compound containing a phenyl group at the α-position of an aldehyde group reacts more readily with indoles to form carbazole derivatives. Using this method, a variety of carbazole derivatives can be readily accessed under mild reaction conditions.
Collapse
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei 11677, Taiwan R. O. C
| | - Hung-Sheng Chien
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei 11677, Taiwan R. O. C
| | - Chao-Hua Chen
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei 11677, Taiwan R. O. C
| | - Hao-Yu Tsai
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei 11677, Taiwan R. O. C
| | - Dai-Ru Chung
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei 11677, Taiwan R. O. C
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei 11677, Taiwan R. O. C
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei 11677, Taiwan R. O. C
| |
Collapse
|
14
|
Ito K, Sakai S, Yoshida K. Synthesis of [1]Benzothieno[2,3- b][1]benzothiophenes from 3-Arylbenzo[ b]thiophenes through Iodine-Mediated Sulfur Insertion Reaction. J Org Chem 2023; 88:14797-14802. [PMID: 37788823 DOI: 10.1021/acs.joc.3c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The reaction of 3-arylbenzo[b]thiophenes and elemental sulfur to obtain [1]benzothieno[2,3-b][1]benzothiophenes (BTBTs) is reported. The addition of molecular iodine is essential for the reaction. In previous reactions that used 1,1-diarylethylenes as the starting material, side products that were difficult to separate were generated. The present reaction does not produce such side products and is therefore advantageous for obtaining BTBTs in high yield and purity.
Collapse
|
15
|
Yao L, Li W, Xiao F, Deng GJ. Three-Component Tandem Amidosulfenylation of Alkenes for the Synthesis of β-Succinimide Sulfides. J Org Chem 2023; 88:13956-13966. [PMID: 37699255 DOI: 10.1021/acs.joc.3c01518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
An environmentally benign multicomponent strategy for the amidosulfenylation of alkenes for the synthesis of β-succinimide sulfides is disclosed. In this process, common disulfides smoothly act as a sulfur-based source, and N-iodosuccinimide (NIS) is used not only as a free radical initiator but also as an N-nucleophile. A broad range of functional groups are tolerated in this reaction system.
Collapse
Affiliation(s)
- Lin Yao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Wenjian Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
16
|
Chouhan A, Ucheniya K, Yadav L, Jat PK, Gurjar A, Badsara SS. Electrochemical direct C-H mono and bis-chalcogenation of indolizine frameworks under oxidant-free conditions. Org Biomol Chem 2023; 21:7643-7653. [PMID: 37682240 DOI: 10.1039/d3ob01109g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Herein, we disclosed a sustainable electrochemical approach for site-selective C-H mono and bis-chalcogenation (sulfenylation or selenylation) of indolizine frameworks. Diversely functionalized disulfides and diselenides possessing EDGs and EWGs were successfully reacted with a variety of indolizines to directly access sulfenylated/selenylated indolizines in 40-96% yields. A mechanistic radical pathway was also validated with control experiments and cyclic voltammogram data.
Collapse
Affiliation(s)
- Amreen Chouhan
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan 302004, India.
| | - Kusum Ucheniya
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan 302004, India.
| | - Lalit Yadav
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan 302004, India.
| | - Pooja Kumari Jat
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan 302004, India.
| | - Asha Gurjar
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan 302004, India.
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan 302004, India.
| |
Collapse
|
17
|
Sun Y, Zhang SP, Yang WC. Divergent Construction of Thiochromanes and N-Arylbutanamides via Arylthiodifluoromethyl Radical-Triggered Cascade of Alkenes. J Org Chem 2023; 88:13279-13290. [PMID: 37650696 DOI: 10.1021/acs.joc.3c01576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A strategy utilizing silver-catalyzed oxidative decarboxylation radical cascade cyclization of arylthiodifluoroacetic acids with alkenes for the simple and efficient preparation of difluoromethylated thiochromanes and 2,2-disubstituted-N-arylbutanamides derivatives has been developed. This approach includes good functional group tolerance, easily accessible starting materials, and operational simplicity.
Collapse
Affiliation(s)
- Yu Sun
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Shu-Peng Zhang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-Chao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
18
|
Buran Uğur S, Dilem Doğan Ş. Iodine-mediated oxidative N–S bond formation: a facile one-pot synthetic approach to 1,2,4-benzothiadiazine 1,1-dioxides under transition metal-free conditions. J Sulphur Chem 2023. [DOI: 10.1080/17415993.2022.2164693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sümeyye Buran Uğur
- Department of Basic Sciences, Faculty of Pharmacy, Erciyes University Kayseri, Turkey
- Department of Chemistry, Faculty of Science, Erciyes University Kayseri, Turkey
| | - Şengül Dilem Doğan
- Department of Basic Sciences, Faculty of Pharmacy, Erciyes University Kayseri, Turkey
| |
Collapse
|
19
|
Jia X, Ma X, Feng W, Zhang JQ, Zhao Y, Guo B, Tang L, Yang YY. DBU-Catalyzed Aerobic CDC Reaction of Thiophenols. J Org Chem 2022; 87:16492-16505. [PMID: 36473149 DOI: 10.1021/acs.joc.2c02207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A convenient method was developed for the preparation of thiolated compounds via a DBU-catalyzed aerobic cross-dehydrogenative coupling (CDC) reaction. The established protocol is environmentally friendly and operationally simple. Substrates like (hetero)aryl acetates, (hetero)aryl ketones, and indoles could be transformed into the corresponding thiolated products in moderate to high yields and further applied in the preparation of bioactive compounds in a prefunctionalization-free manner.
Collapse
Affiliation(s)
- Xuemin Jia
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Xiao Ma
- Department of Pharmacy, Guiyang Maternal and Child Health Care Hospital, 550003 Guiyang, P. R. China
| | - Wei Feng
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, 518083 Shenzhen, China
| | - Ji-Quan Zhang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yonglong Zhao
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550004 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yuan-Yong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|
20
|
Dimethyl Sulfoxide-Assisted, Iodine- and Ascorbic Acid-Catalyzed One-Pot Synthetic Approach for Constructing Highly Substituted Pyrazolo[1,5- a]quinoline Thioether Derivatives. J Org Chem 2022; 87:13856-13872. [PMID: 36215433 DOI: 10.1021/acs.joc.2c01557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A dimethyl sulfoxide-assisted and iodine/ascorbic acid-catalyzed simple approach to pyrazolo[1,5-a]quinoline thioether derivatives 22 is described. The compounds were identified using 1H NMR, 13C NMR, high-resolution mass spectrometry, and single-crystal X-ray diffractometry. The pyrazolo[1,5-a]quinoline thioether was synthesized in a stepwise fashion through aryl sulfenylation and benzannulation strategies. The generated heteroaryl thioether compounds 23 were exposed to the benzannulation path to produce pyrazolo[1,5-a]quinoline thioether 22. The benzannulation reaction proceeds by way of diazotization of the pyrazole amine derivative 23, radical generation by the removal of nitrogen, and eventually trapping of the aryl radical with the support of phenylacetylene 19. A catalytic amount of ascorbic acid aided the benzannulation reaction. There were several other control studies conducted, including trapping reactions with isopropenyl acetate, tetramethylpiperidine N-oxyl reactions, and reactions without phenylacetylene. Since a change in the substitution has previously demonstrated substantial bioactivity, the core structure of pyrazole was evaluated for functional group tolerance. A reasonable mechanism is then proposed, accompanied by the support of control experiments and scope. A Suzuki reaction was used to create an aryl/heteroaryl compound 35 from one of the synthesized compounds 22b. In the controlled oxidation reaction paths, molecule 22a was selectively transformed into the corresponding sulfoxide 32 and sulfone 33.
Collapse
|
21
|
Zheng Y, Liu ZW, Li T, Li X, Li SH. KIO 3-Mediated γ-C(sp 3)-H Sulfenylation of Enaminones. Org Lett 2022; 24:7533-7537. [PMID: 36219730 DOI: 10.1021/acs.orglett.2c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A metal-free regioselective γ-C(sp3)-H sulfenylation of enaminones with heterocyclic thiols is reported. This transformation is efficient, mild, scalable, and environmentally friendly and tolerates a large variety of enaminones substrates and heterocyclic thiols. The utility of this strategy is demonstrated in a late-stage modification of bioactive natural products and drug derivatives.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Zhi-Wei Liu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Tao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.,State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
22
|
Chen R, Li S, Zhang J, Cao J, Wang KK, Meng T, Liu L. Copper-Catalyzed Regio- and Stereoselective Sulfonylation of Alkynyl Imines with Sulfonyl Hydrazides: Access to ( E)-β-Sulfonyl Enones. J Org Chem 2022; 87:13322-13330. [PMID: 36129682 DOI: 10.1021/acs.joc.2c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed sulfonylation of alkynyl imines with sulfonyl hydrazides has been developed, which exhibited excellent regio- and stereoselectivity and furnished a series of (E)-β-sulfonyl enones in moderate to good yields. Mechanistic studies suggest that this strategy goes through a radical process.
Collapse
Affiliation(s)
- Rongxiang Chen
- School of Pharmacy, Xinxiang University, Xinxiang 453003, PR China
| | - Shaozhu Li
- School of Pharmacy, Xinxiang University, Xinxiang 453003, PR China
| | - Jinju Zhang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, PR China
| | - Jing Cao
- School of Pharmacy, Xinxiang University, Xinxiang 453003, PR China
| | - Kai-Kai Wang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, PR China
| | - Tuanjie Meng
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, PR China
| | - Lantao Liu
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, PR China
| |
Collapse
|
23
|
Yang CL, Gao XJ, Jiang XY, Shi Z, Hao EJ, Dong ZB. Synthesis of Unsymmetric Thiosulfonates Starting from N-Substituted O-Thiocarbamates: Easy Access to the S-SO 2 Bond. J Org Chem 2022; 87:11656-11668. [PMID: 35959946 DOI: 10.1021/acs.joc.2c01301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using phenyliodine diacetate as an oxidant and nickel acetate as a promoter, a wide range of unsymmetric thiosulfonates could be furnished easily in moderate to excellent yields starting from N-substituted O-thiocarbamates and sodium sulfinates. This protocol features mild conditions, short reaction times, and high atomic utilization, which can provide an alternative method for the synthesis of unsymmetric thiosulfonates. In addition, the reaction could be scaled up on a gram scale, showing potential application value in industry.
Collapse
Affiliation(s)
- Cheng-Li Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xue-Jie Gao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xin-Yi Jiang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Engineering Research Center of Phosphorus Resources Development and Utilization, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
24
|
Yan Z, Wang NX, Zhang LY, Wu YH, Li JL, She MY, Gao XW, Feng K, Xing Y. The C(sp 3)-H bond functionalization of thioethers with styrenes with insight into the mechanism. Org Biomol Chem 2022; 20:5845-5851. [PMID: 35848391 DOI: 10.1039/d2ob00872f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free inactive C(sp3)-H bond functionalization of thioethers with styrenes using TBHP as an initiator and DBU as a base has been developed. This transformation has broken through the low activity of thioethers and realized moderate yields. Herein extended experiments were conducted to confirm the radical relay process, reaction energy and intermediate transformations.
Collapse
Affiliation(s)
- Zhan Yan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Lei-Yang Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yue-Hua Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jian-Li Li
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Meng-Yao She
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Xue-Wang Gao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ke Feng
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey, New Jersey, 07470, USA.
| |
Collapse
|
25
|
Shi T, Wang X, Xiong Y, Yin G, Liu L, Wang Z. Lawesson's Reagent‐Mediated Deoxygenation Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tao Shi
- School of Pharmacy Lanzhou University No. 199 West Donggang Road Lanzhou 730000 China
| | - Xiaodong Wang
- School of Pharmacy Lanzhou University No. 199 West Donggang Road Lanzhou 730000 China
| | - Yongxia Xiong
- School of Pharmaceutical Science Hengyang Medical School University of South China No. 28 West Changsheng Road Hengyang 421001, Hunan China
| | - Gaofeng Yin
- School of Pharmacy Lanzhou University No. 199 West Donggang Road Lanzhou 730000 China
| | - Linyi Liu
- School of Pharmaceutical Science Hengyang Medical School University of South China No. 28 West Changsheng Road Hengyang 421001, Hunan China
| | - Zhen Wang
- School of Pharmacy Lanzhou University No. 199 West Donggang Road Lanzhou 730000 China
- School of Pharmaceutical Science Hengyang Medical School University of South China No. 28 West Changsheng Road Hengyang 421001, Hunan China
| |
Collapse
|
26
|
Transition-Metal-Free Synthesis of Symmetrical 1,4-diarylsubstituted 1,3-Diynes By Iodine-Mediated Decarboxylative Homocoupling of Arylpropiolic Acids. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Boron-promoted reductive deoxygenation coupling reaction of sulfonyl chlorides for the C(sp3)-S bond construction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
29
|
Shi T, Wang XD, Yin G, Wang Z. Lawesson’s Reagent-Promoted Deoxygenation of γ-Hydroxylactams or Succinimides for the Syntheses of Substituted Pyrroles. Org Chem Front 2022. [DOI: 10.1039/d2qo00013j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method of Lawesson’s reagent-promoted deoxygenation of γ-hydroxypyrrolidones or succinimides is developed for synthesizing substituted pyrroles, where 92 examples are displayed. This reaction is featured by simple operation, satisfying...
Collapse
|
30
|
Saroha M, Sindhu J, Kumar S, Bhasin KK, Khurana JM, Varma RS, Tomar D. Transition Metal‐Free Sulfenylation of C−H Bonds for C−S Bond Formation in Recent Years: Mechanistic Approach and Promising Future. ChemistrySelect 2021. [DOI: 10.1002/slct.202102042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohit Saroha
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Kuldip K. Bhasin
- Department of Chemistry & Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | | | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Deepak Tomar
- Department of Chemistry R. K. P. G. College Shamli Uttar Pradesh 247776 India
| |
Collapse
|
31
|
Wu Y, Peng K, Hu Z, Fan Y, Shi Z, Hao E, Dong Z. Iodine‐Mediated Cross‐Dehydrogenative Coupling of Heterocyclic Thiols with Amines: An Easy and Practical Formation of S−N Bond. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue‐Xiao Wu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Kang Peng
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Zhi‐Chao Hu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Yong‐Hao Fan
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization Hubei Minzu University Enshi 445000 China
| | - Er‐Jun Hao
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
- Hubei Key Laboratory of Biologic Resources Protection and Utilization Hubei Minzu University Enshi 445000 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- Key Laboratory of Green Chemical Process, Ministry of Education Wuhan Institute of Technology Wuhan 430205 China
- Hubei key Laboratory of Novel Reactor and Green Chemistry Technology Wuhan Institute of Technology Wuhan 430205 China
| |
Collapse
|
32
|
Yu Q, Liu Y, Wan JP. Metal-free C(sp2)-H perfluoroalkylsulfonylation and configuration inversion: Stereoselective synthesis of α-perfluoroalkylsulfonyl E-enaminones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Liang G, Wang JH, Lei T, Cheng YY, Zhou C, Chen YJ, Ye C, Chen B, Tung CH, Wu LZ. Direct C-H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. Org Lett 2021; 23:8082-8087. [PMID: 34609892 DOI: 10.1021/acs.orglett.1c03090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An aerobic metal-free, visible-light-induced regioselective thiolation of phenols with thiophenols is reported. The cross-coupling protocol exhibits great functional group tolerance and high regioselectivity. Mechanistic studies reveal that the disulfide radical cation plays a crucial role in the visible-light catalysis of aerobic thiolation. Simply controlling the equivalent ratio of substrates enables the selective formation of sulfide or sulfoxide products with high activity in a one-pot reaction.
Collapse
Affiliation(s)
- Ge Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing-Hao Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ya-Jing Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Mulina OM, Ilovaisky AI, Terent'ev AO. Sulfenylation of Indoles Mediated by Iodine and Its Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Olga M. Mulina
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
- All Russian Research Institute for Phytopathology B. Vyazyomy 143050 Moscow Region Russian Federation
| | - Alexander O. Terent'ev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
35
|
Lanfranco A, Moro R, Azzi E, Deagostino A, Renzi P. Unconventional approaches for the introduction of sulfur-based functional groups. Org Biomol Chem 2021; 19:6926-6957. [PMID: 34333579 DOI: 10.1039/d1ob01091c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Organosulfur compounds have a pivotal role in the functionalities of many natural products, pharmaceuticals and organic materials. For these reasons, the search for new methodologies for the formation of carbon-sulfur bonds has been the object of intensive work for organic chemists. However, the proposed strategies suffer from various drawbacks, such as volatility, toxicity, and instability of the sulfur sources or the use of VOC solvents. In this review, we summarise the recent protocols which have the goal of obtaining sulfones, thioethers, thiazines, thiazepines and sulfonamides in an unconventional and/or sustainable way. The use of starting materials less invasive and toxic with respect to the traditional reagents, alternative solvents such as water, ionic liquids or deep eutectic solvents, the exploitation of ultrasound and electrochemistry, increasing the efficiency of the process, are reported. Moreover, representative reaction mechanisms are also discussed.
Collapse
Affiliation(s)
- Alberto Lanfranco
- Department of Chemistry, University of Torino, Via Giuria, 7, Torino, 10125, Italy.
| | | | | | | | | |
Collapse
|
36
|
Tian S, Wang C, Xia J, Wan J, Liu Y. Transition Metal‐Free, Free‐Radical Sulfenylation of the α‐C(
sp
3
)−H Bond in Arylacetamides and Its Application Toward 2‐Thiomethyl Benzoxazoles Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shanghui Tian
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jianhui Xia
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| |
Collapse
|
37
|
Raghuvanshi DS, Verma N. An iodine-mediated new avenue to sulfonylation employing N-hydroxy aryl sulfonamide as a sulfonylating agent. Org Biomol Chem 2021; 19:4760-4767. [PMID: 33978047 DOI: 10.1039/d1ob00036e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel and highly efficient I2/K2CO3 mediated regioselective sulfonylation of thiophenols, aryl acetylenic acid and aromatic alkynes with N-hydroxy sulfonamide has been developed. N-hydroxy sulfonamide has been used for the first time for the synthesis of these sulfones. The scope and versatility of the reaction has been demonstrated by the regio- and stereoselective synthesis of different analogs of sulfones with various structural features.
Collapse
Affiliation(s)
- Dushyant Singh Raghuvanshi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| | - Narsingh Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India. and Academy of Scientific and Innovative Research, Ghaziabad, 221002, India
| |
Collapse
|
38
|
Moura IMR, Tranquilino A, Sátiro BG, Silva RO, de Oliveira-Silva D, Oliveira RA, Menezes PH. Unusual Application for Phosphonium Salts and Phosphoranes: Synthesis of Chalcogenides. J Org Chem 2021; 86:5954-5964. [PMID: 33789421 DOI: 10.1021/acs.joc.1c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel strategy for the synthesis of sulfides and selenides from phosphonium salts and thio- or selenesulfonates, commercially available compounds, is described. When phosphoranes were used in the reaction, different products were obtained. The methodology does not require the use of metals, reactive species, or anhydrous conditions to be performed.
Collapse
Affiliation(s)
- Igor M R Moura
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Arisson Tranquilino
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Barbara G Sátiro
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Ricardo O Silva
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Diogo de Oliveira-Silva
- Depto. de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, 09972-270 Diadema, São Paulo, Brazil
| | - Roberta A Oliveira
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Paulo H Menezes
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| |
Collapse
|
39
|
Tanimoto K, Okai H, Oka M, Ohkado R, Iida H. Aerobic Oxidative C-H Azolation of Indoles and One-Pot Synthesis of Azolyl Thioindoles by Flavin-Iodine-Coupled Organocatalysis. Org Lett 2021; 23:2084-2088. [PMID: 33656903 DOI: 10.1021/acs.orglett.1c00241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aerobic oxidative cross-coupling of indoles with azoles driven by flavin-iodine-coupled organocatalysis has been developed for the green synthesis of 2-(azol-1-yl)indoles. The coupled organocatalytic system enabled the one-pot three-component synthesis of 2-azolyl-3-thioindoles from indoles, azoles, and thiols in an atom-economical manner by utilizing molecular oxygen as the only sacrificial reagent.
Collapse
Affiliation(s)
- Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
40
|
Zhang X, Lin B, Chen J, Chen J, Luo Y, Xia Y. Synthesis of Sulfimides and N-Allyl- N-(thio)amides by Ru(II)-Catalyzed Nitrene Transfer Reactions of N-Acyloxyamides. Org Lett 2021; 23:819-825. [PMID: 33428420 DOI: 10.1021/acs.orglett.0c04043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The N-acyloxyamides were employed as effective N-acyl nitrene precursors in reactions with thioethers under the catalysis of a commercially available Ru(II) complex, from which a variety of sulfimides were synthesized efficiently and mildly. If an allyl group is contained in the thioether precursor, the [2,3]-sigmatropic rearrangement of the sulfimide occurs simultaneously and the N-allyl-N-(thio)amides were obtained as the final products. Preliminary mechanistic studies indicated that the Ru-nitrenoid species should be a key intermediate in the transformation.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bo Lin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiajia Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
41
|
Yang Y, Gao W, Wang Y, Wang X, Cao F, Shi T, Wang Z. Recent Advances in Copper Promoted Inert C(sp3)–H Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04618] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuhang Yang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, Gansu, People’s Republic of China
| | - Weiwei Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, People’s Republic of China
| | - Yongqiang Wang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, Gansu, People’s Republic of China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, Gansu, People’s Republic of China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, People’s Republic of China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, Gansu, People’s Republic of China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, Gansu, People’s Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, People’s Republic of China
| |
Collapse
|