1
|
Sun BQ, Yang J, Fan L, Xu Q, Wang S, Zhong H, Xiang HY. Base-Promoted Nucleophilic Phosphorylation of Benzyl Fluorides via C(sp 3)-F Cleavage. J Org Chem 2024; 89:11739-11746. [PMID: 39110911 DOI: 10.1021/acs.joc.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Herein, a transition-metal-free phosphorylation of benzyl fluorides with P(O)-H compounds is disclosed. In the presence of tBuOK, various benzyl fluorides react with P(O)-H compounds to produce the corresponding benzyl phosphine oxides, phosphinates, and phosphonates in good to high yields. This base-promoted phosphorylation reaction offers a facile and general strategy for the construction of a C(sp3)-P bond.
Collapse
Affiliation(s)
- Bing-Qian Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Jia Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Lei Fan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Qian Xu
- Hunan Research Institute of Chemical Industry, Changsha 410014, P. R. China
| | - Shuai Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
2
|
Garg A, Haswell A, Hopkinson MN. C-F Bond Insertion: An Emerging Strategy for Constructing Fluorinated Molecules. Chemistry 2024; 30:e202304229. [PMID: 38270496 DOI: 10.1002/chem.202304229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
C-F Insertion reactions, where an organic fragment formally inserts into a carbon-fluorine bond in a substrate, are highly attractive, yet largely unexplored, methods to prepare valuable fluorinated molecules. The inherent strength of C-F bonds and the resulting need for a large thermodynamic driving force to initiate C-F cleavage often leads to sequestering of the released fluoride in an unreactive by-product. Recently, however, several groups have succeeded in overcoming this challenge, opening up the study of C-F insertion as an efficient and highly atom-economical approach to prepare fluorinated compounds. In this article, the recent breakthroughs are discussed focusing on the key conceptual advances that allowed for both C-F bond cleavage and subsequent incorporation of the released fluoride into the product.
Collapse
Affiliation(s)
- Arushi Garg
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Alex Haswell
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Matthew N Hopkinson
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| |
Collapse
|
3
|
Horwitz MA, Dürr AB, Afratis K, Chen Z, Soika J, Christensen KE, Fushimi M, Paton RS, Gouverneur V. Regiodivergent Nucleophilic Fluorination under Hydrogen Bonding Catalysis: A Computational and Experimental Study. J Am Chem Soc 2023; 145:9708-9717. [PMID: 37079853 PMCID: PMC10161234 DOI: 10.1021/jacs.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The controlled programming of regiochemical outcomes in nucleophilic fluorination reactions with alkali metal fluoride is a problem yet to be solved. Herein, two synergistic approaches exploiting hydrogen bonding catalysis are presented. First, we demonstrate that modulating the charge density of fluoride with a hydrogen-bond donor urea catalyst directly influences the kinetic regioselectivity in the fluorination of dissymmetric aziridinium salts with aryl and ester substituents. Moreover, we report a urea-catalyzed formal dyotropic rearrangement, a thermodynamically controlled regiochemical editing process consisting of C-F bond scission followed by fluoride rebound. These findings offer a route to access enantioenriched fluoroamine regioisomers from a single chloroamine precursor, and more generally, new opportunities in regiodivergent asymmetric (bis)urea-based organocatalysis.
Collapse
Affiliation(s)
- Matthew A Horwitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Alexander B Dürr
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Konstantinos Afratis
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Zijun Chen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Julia Soika
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Makoto Fushimi
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80528, United States
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
4
|
Ghosh S, Qu ZW, Roy S, Grimme S, Chatterjee I. Photoredox Catalyzed Single C-F Bond Activation of Trifluoromethyl Ketones: A Solvent Controlled Divergent Access of gem-Difluoromethylene Containing Scaffolds. Chemistry 2023; 29:e202203428. [PMID: 36445786 DOI: 10.1002/chem.202203428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| |
Collapse
|
5
|
Sonet D, Cayla M, Méreau R, Morvan E, Lacoudre A, Vanthuyne N, Albalat M, Bassani DM, Scalabre A, Pouget E, Bibal B. Chiral Anthranyl Trifluoromethyl Alcohols: Structures, Oxidative Dearomatization and Chiroptical Properties. Chemistry 2022; 28:e202202695. [PMID: 36316221 DOI: 10.1002/chem.202202695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/05/2022]
Abstract
Chiral trifluoromethyl alcohol groups were introduced at the hindered ortho positions of 9,10-diphenylanthracenes to investigate their effects on the physical properties and reactivity towards oxidative dearomatization. In such compact structures, the position in different quadrants and the preferred orientation of the -CH(OH)CF3 groups were determined by the relative and absolute configurations of each stereoisomer, respectively. As a consequence, the stereochemistry governs the organization of the H-bonded molecules in single crystals (homochiral dimers vs ribbon), whereas in chlorinated solvents, they all behave as discrete compounds. Concerning their reactivity, the stereospecific dearomative oxidation of these molecules leads to 9,10-bis-spiro-isobenzofuran-anthracenes, when using organic single-electron transfer oxidants. The chiroptical properties of the alcohols and the corresponding dearomatized products were compared and showed an important modulation of the intensity.
Collapse
Affiliation(s)
- Dorian Sonet
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Mattéo Cayla
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US001, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Aline Lacoudre
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Nicolas Vanthuyne
- Centrale Marseille, iSm2, Aix-Marseille Université, CNRS, 52 avenue Escadrille Normandie Niemen, 13013, Marseille, France
| | - Muriel Albalat
- Centrale Marseille, iSm2, Aix-Marseille Université, CNRS, 52 avenue Escadrille Normandie Niemen, 13013, Marseille, France
| | - Dario M Bassani
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Brigitte Bibal
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| |
Collapse
|
6
|
Balaraman K, Kyriazakos S, Palmer R, Thanzeel FY, Wolf C. Selective Csp 3-F Bond Functionalization with Lithium Iodide. SYNTHESIS-STUTTGART 2022; 54:4320-4328. [PMID: 36330045 PMCID: PMC9624501 DOI: 10.1055/s-0041-1738383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A highly efficient method for C-F bond functionalization of a broad variety of activated and unactivated aliphatic substrates with inexpensive lithium iodide is presented. Primary, secondary, tertiary, benzylic, propargylic and α-functionalized alkyl fluorides react in chlorinated or aromatic solvents at room temperature or upon heating to the corresponding iodides which are isolated in 91-99% yield. The reaction is selective for aliphatic monofluorides and can be coupled with in situ nucleophilic iodide replacements to install carbon-carbon, carbon-nitrogen and carbon-sulfur bonds with high yields. Alkyl difluorides, trifluorides, even in activated benzylic positions, are inert under the same conditions and aryl fluoride bonds are also tolerated.
Collapse
Affiliation(s)
- Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | | | - Rachel Palmer
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - F Yushra Thanzeel
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| |
Collapse
|
7
|
Balaraman K, Wolf C. Chemodivergent Csp 3─F bond functionalization and cross-electrophile alkyl-alkyl coupling with alkyl fluorides. SCIENCE ADVANCES 2022; 8:eabn7819. [PMID: 35622926 PMCID: PMC9140971 DOI: 10.1126/sciadv.abn7819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The widespread use of fluorinated organic compounds in the health, agrochemical, and materials sciences is sustained by a steadily growing pool of commercially available fine chemicals. The synthetic utility of the increasingly ubiquitous Csp3─F bond, however, remains to be fully exploited, which is often a difficult task because of its paramount stability and chemical inertness. Here, we demonstrate chemodivergent activation of monofluoroalkyl compounds toward either nucleophilic or electrophilic intermediates. This is accomplished under conditions that are compatible with several reaction types and many functional groups, which drastically widens the current scope of organofluorine chemistry and sets the stage for carbon-carbon and carbon-heteroatom bond formations, stereoselective construction of bisoxindole alkaloid scaffolds via in situ Umpolung, and cross-electrophilic coupling methodology. The selective generation of either nucleophilic or electrophilic species and the possibility of doing so simultaneously or, alternatively, switching molecular polarity enable previously unidentified synthetic opportunities that recognize alkyl fluorides as chemodivergent building blocks.
Collapse
|
8
|
Ghosh S, Qu Z, Pradhan S, Ghosh A, Grimme S, Chatterjee I. HFIP‐Assisted Single C−F Bond Activation of Trifluoromethyl Ketones using Visible‐Light Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry Indian Institute of Technology Ropar Nangal Road Rupnagar Punjab 140001 India
| | - Zheng‐Wang Qu
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Suman Pradhan
- Department of Chemistry Indian Institute of Technology Ropar Nangal Road Rupnagar Punjab 140001 India
| | - Avisek Ghosh
- Department of Chemistry Indian Institute of Technology Ropar Nangal Road Rupnagar Punjab 140001 India
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Indranil Chatterjee
- Department of Chemistry Indian Institute of Technology Ropar Nangal Road Rupnagar Punjab 140001 India
| |
Collapse
|
9
|
Zerban JJ, Bagnall B, Davis TA. Enhancing the Leaving Group Ability of Alkyl Fluorides: I/F Exchange Reactions Mediated by LiI. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Ghosh S, Qu ZW, Pradhan S, Ghosh A, Grimme S, Chatterjee I. HFIP-Assisted Single C-F Bond Activation of Trifluoromethyl Ketones using Visible-Light Photoredox Catalysis. Angew Chem Int Ed Engl 2021; 61:e202115272. [PMID: 34821454 DOI: 10.1002/anie.202115272] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/07/2022]
Abstract
A visible light photoredox catalytic method for the selective cleavage of single strong C-F bond in trifluoromethyl ketones is reported. Single electron reduction of trifluoromethyl ketones generates difluoromethyl radicals which can be engaged in intermolecular C-C bond formation with N-methyl-N-arylmethacrylamides to furnish fluorine-containing oxindole derivatives in good yields. The reaction shows excellent chemoselectivity with good functional group tolerance under mild conditions. 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) as a solvent plays a critical role for the selective single C-F bond cleavage. High-level DFT calculations are depicted to shed light on the mechanism.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Suman Pradhan
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Avisek Ghosh
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| |
Collapse
|
11
|
Takagi R, Duong DT. Computational study on N-triflylphosphoramide-catalyzed enantioselective hydroamination of alkenyl thiourea. Org Biomol Chem 2021; 19:8806-8811. [PMID: 34569576 DOI: 10.1039/d1ob01672e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism of the enantioselective intramolecular hydroamination of alkenyl thiourea catalyzed by chiral binaphthol N-triflylphosphoramide (NPTA) was investigated using density functional theory calculations. This study reveals the details of the hydrogen bonding mode between NPTA and the substrate and indicates the importance of the dual hydrogen binding properties of the thiourea moiety for the reactivity and stereoselectivity of the hydroamination.
Collapse
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Duyen Thi Duong
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
12
|
Vulpetti A, Dalvit C. Hydrogen Bond Acceptor Propensity of Different Fluorine Atom Types: An Analysis of Experimentally and Computationally Derived Parameters. Chemistry 2021; 27:8764-8773. [PMID: 33949737 DOI: 10.1002/chem.202100301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/29/2022]
Abstract
The propensity of organic fluorine acting as a weak hydrogen bond acceptor (HBA) in intermolecular and intramolecular interactions has been the subject of many experimental and theoretical studies often reaching different conclusions. Over the last few years, new and stronger evidences have emerged for the direct involvement of fluorine in weak hydrogen bond (HB) formation. However, not all the fluorine atom types can act as weak HBA. In this work, the differential HBA propensity of various types of fluorine atoms was analyzed with a particular emphasis for the different types of alkyl fluorides. This was carried out by evaluating ab initio computed parameters, experimental 19 F NMR chemical shifts and small molecule crystallographic structures (extracted from the CSD database). According to this analysis, shielded (with reference to the 19 F NMR chemical shift) alkyl mono-fluorinated motifs display the highest HBA propensity in agreement with solution studies. Although much weaker than other well-characterized HB complexes, the fragile HBs formed by these fluorinated motifs have important implications for the chemical-physical and structural properties of the molecules, chemical reactions, and protein-ligand recognition.
Collapse
Affiliation(s)
- Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002, Basel, Switzerland
| | | |
Collapse
|
13
|
Spencer ARA, Grainger R, Panigrahi A, Lepper TJ, Bentkowska K, Larrosa I. Transition metal-free cross-dehydrogenative arylation of unactivated benzylic C–H bonds. Chem Commun (Camb) 2020; 56:14479-14482. [DOI: 10.1039/d0cc06212j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cross-dehydrogenative arylation of benzylic C–H bonds with arenes provides straightforward access to synthetically useful 1,1-diarylmethanes, from readily available starting materials.
Collapse
Affiliation(s)
- Andrew R. A. Spencer
- Department of Chemistry
- School of Natural Sciences
- University of Manchester
- Manchester M13 9PL
- UK
| | - Rachel Grainger
- Department of Chemistry
- School of Natural Sciences
- University of Manchester
- Manchester M13 9PL
- UK
| | - Adyasha Panigrahi
- Department of Chemistry
- School of Natural Sciences
- University of Manchester
- Manchester M13 9PL
- UK
| | - Thomas J. Lepper
- Department of Chemistry
- School of Natural Sciences
- University of Manchester
- Manchester M13 9PL
- UK
| | - Katarzyna Bentkowska
- Department of Chemistry
- School of Natural Sciences
- University of Manchester
- Manchester M13 9PL
- UK
| | - Igor Larrosa
- Department of Chemistry
- School of Natural Sciences
- University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|