1
|
Hu J, Zheng S, Xu J, Feng R, Li T, Wang T, Zhang W, Liu W, Saleem F. Innovative Synthesis of Au Nanoparticle-Trapped Flexible Macrocrystals: Achieving Stable Black Crystal Wires with Broadband Absorption. SMALL METHODS 2024:e2400871. [PMID: 39155822 DOI: 10.1002/smtd.202400871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Indexed: 08/20/2024]
Abstract
In optical materials, the development of absorbers for a wide spectrum is a focal point of research. A pivotal challenge lies in ensuring the stability and durability of optical absorbers, particularly at elevated temperatures. This study introduces a novel approach to creating absorbers with diverse colors, focusing on the synthesis and properties of black crystal wires. In contrast to black gold nanoparticle (Au NP) precipitates, which change color within hours under similar conditions, the method involves strategically trapping Au NPs within defects during the growth of single crystals. This results in black crystal wires that not only exhibit broadband absorption but also maintain exceptional stability even under prolonged exposure to high temperatures. The method also involves the controlled synthesis of colorless and red crystal wires. As a proof of concept, these stable black Au crystal wires demonstrate superior performance in photothermal conversion applications. The methodology, derived from the crystal growth process, presents a defect template that offers a novel approach to material design. Furthermore, these unique crystals, available in various colors, hold significant promise for a range of unexplored applications.
Collapse
Affiliation(s)
- Jiuyi Hu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Shaohui Zheng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jiayu Xu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ri Feng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Tingting Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ting Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wenjing Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Faisal Saleem
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
2
|
Ariga K. Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics. Molecules 2024; 29:3168. [PMID: 38999120 PMCID: PMC11243083 DOI: 10.3390/molecules29133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
3
|
Self-Assembly of Au–Ag Alloy Hollow Nanochains for Enhanced Plasmon-Driven Surface-Enhanced Raman Scattering. NANOMATERIALS 2022; 12:nano12081244. [PMID: 35457952 PMCID: PMC9025440 DOI: 10.3390/nano12081244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
In this paper, Au–Ag alloy hollow nanochains (HNCs) were successfully prepared by a template-free self-assembly method achieved by partial substitution of ligands. The obtained Au–Ag alloy HNCs exhibit stronger enhancement as surface-enhanced Raman scattering (SERS) substrates than Au–Ag alloy hollow nanoparticles (HNPs) and Au nanochains substrates with an intensity ratio of about 1.3:1:1. Finite difference time domain (FDTD) simulations show that the SERS enhancement of Au–Ag alloy HNCs substrates is produced by a synergistic effect between the plasmon hybridization effect associated with the unique alloy hollow structure and the strong “hot spot” in the interstitial regions of the nanochains.
Collapse
|
4
|
Wu GY, Zheng W, Yang XL, Liu QJ, Cheng L. Supramolecular Metallacycle-Assisted Interfacial Self-Assembly: A Promising Method of Fabricating Gold Nanoparticle Monolayers with Precise Interparticle Spacing for Tunable SERS Activity. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Cong T, Wang J, Zhao Y, Zhang D, Fan Z, Pan L. Tip-to-tip assembly of urchin-like Au nanostar at water-oil interface for surface-enhanced Raman spectroscopy detection. Anal Chim Acta 2021; 1154:338323. [PMID: 33736799 DOI: 10.1016/j.aca.2021.338323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
Au Nanostar (NS) monolayer as a surface enhanced Raman scattering (SERS) substrate has been synthesized by self-assembly at a water-oil interface. It is confirmed from the experiment and simulation results that the Au NS monolayer includes lots of "hot spots" at or between the tips of the Au NSs, enhancing the local electromagnetic fields and giving rise to strong SERS signals sequentially. The limit of detection is determined to be down to 4.2 × 10-12 M for rhodamine 6G. Furthermore, the Au NS monolayer can detect multiple molecules, including thiabendazole, methylene blue, 4-mercaptobenzoic acid, and p-amino thiophenol, indicating that the SERS substrate composed of Au NS monolayer has potential applications in analytical chemistry, food safety, and environmental safety.
Collapse
Affiliation(s)
- Tianze Cong
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Jianzhen Wang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Yongpeng Zhao
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China; School of Microelectronics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Dongmei Zhang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Zeng Fan
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Lujun Pan
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China.
| |
Collapse
|