1
|
Zheng M, Kong L, Gao J. Boron enabled bioconjugation chemistries. Chem Soc Rev 2024. [PMID: 39479937 PMCID: PMC11525960 DOI: 10.1039/d4cs00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Indexed: 11/02/2024]
Abstract
Novel bioconjugation reactions have been heavily pursued for the past two decades. A myriad of conjugation reactions have been developed for labeling molecules of interest in their native context as well as for constructing multifunctional molecular entities or stimuli-responsive materials. A growing cluster of bioconjugation reactions were realized by tapping into the unique properties of boron. As a rare element in human biology, boronic acids and esters exhibit remarkable biocompatibility. A number of organoboron reagents have been evaluated for bioconjugation, targeting the reactivity of either native biomolecules or those incorporating bioorthogonal functional groups. Owing to the dynamic nature of B-O and B-N bond formation, a significant portion of the boron-enabled bioconjugations exhibit rapid reversibility and accordingly have found applications in the development of reversible covalent inhibitors. On the other hand, stable bioconjugations have been developed that display fast kinetics and significantly expand the repertoire of bioorthogonal chemistry. This contribution presents a summary and comparative analysis of the recently developed boron-mediated bioconjugations. Importantly, this article seeks to provide an in-depth discussion of the thermodynamic and kinetic profiles of these boron-enabled bioconjugations, which reveals structure-reactivity relationships and provides guidelines for bioapplications.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Lingchao Kong
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
2
|
Haggett JG, Domaille DW. ortho-Boronic Acid Carbonyl Compounds and Their Applications in Chemical Biology. Chemistry 2024; 30:e202302485. [PMID: 37967030 DOI: 10.1002/chem.202302485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.
Collapse
Affiliation(s)
- Jack G Haggett
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
- Quantitative Biology and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| |
Collapse
|
3
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
4
|
Harders P, Griebenow T, Businski A, Kaus AJ, Pietsch L, Näther C, McConnell A. The Dynamic Covalent Chemistry of Amidoboronates: Tuning the rac5/rac6 Ratio via the B‑N and B‐O Dynamic Covalent Bonds. Chempluschem 2022; 87:e202200022. [DOI: 10.1002/cplu.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Harders
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Thomas Griebenow
- Christian Albrechts Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Artjom Businski
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Anton J. Kaus
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Lorenz Pietsch
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Christian Näther
- Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Anna McConnell
- Kiel University Institute of Organic Chemistry Otto-Hahn-Platz 4 24098 Kiel GERMANY
| |
Collapse
|
5
|
Tan Y, Wu J, Song L, Zhang M, Hipolito CJ, Wu C, Wang S, Zhang Y, Yin Y. Merging the Versatile Functionalities of Boronic Acid with Peptides. Int J Mol Sci 2021; 22:ijms222312958. [PMID: 34884766 PMCID: PMC8657650 DOI: 10.3390/ijms222312958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides inherently feature the favorable properties of being easily synthesized, water-soluble, biocompatible, and typically non-toxic. Thus, boronic acid has been widely integrated with peptides with the goal of discovering peptide ligands with novel biological activities, and this effort has led to broad applications. Taking the integration between boronic acid and peptide as a starting point, we provide an overview of the latest research advances and highlight the versatile and robust functionalities of boronic acid. In this review, we summarize the diverse applications of peptide boronic acids in medicinal chemistry and chemical biology, including the identification of covalent reversible enzyme inhibitors, recognition, and detection of glycans on proteins or cancer cell surface, delivery of siRNAs, development of pH responsive devices, and recognition of RNA or bacterial surfaces. Additionally, we discuss boronic acid-mediated peptide cyclization and peptide modifications, as well as the facile chemical synthesis of peptide boronic acids, which paved the way for developing a growing number of peptide boronic acids.
Collapse
Affiliation(s)
- Yahong Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Lulu Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Mengmeng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Christopher John Hipolito
- Screening & Compound Profiling, Quantitative Biosciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (S.W.); (Y.Y.)
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
- Correspondence: (S.W.); (Y.Y.)
| |
Collapse
|
6
|
Far‐Red and Near‐Infrared Boron Schiff Bases (BOSCHIBAs) Dyes Bearing Anionic Boron Clusters. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Li J, Wei J, Li A, Liu H, Sun J, Qiao H. A Dual Peptide Sustained-Release System Based on Nanohydroxyapatite/Polyamide 66 Scaffold for Synergistic-Enhancing Diabetic Rats' Fracture Healing in Osteogenesis and Angiogenesis. Front Bioeng Biotechnol 2021; 9:657699. [PMID: 34124019 PMCID: PMC8188490 DOI: 10.3389/fbioe.2021.657699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus impairs fracture healing and function of stem cells related to bone regeneration; thus, effective bone tissue engineering therapies can intervene with those dysfunctions. Nanohydroxyapatite/polyamide 66 (n-HA/PA66) scaffold has been used in fracture healing, whereas the low bioactivity limits its further application. Herein, we developed a novel bone morphogenetic protein-2- (BMP-2) and vascular endothelial growth factor- (VEGF) derived peptides-decorated n-HA/PA66 (BVHP66) scaffold for diabetic fracture. The n-HA/PA66 scaffold was functionalized by covalent grafting of BMP-2 and VEGF peptides to construct a dual peptide sustained-release system. The structural characteristics and peptide release profiles of BVHP66 scaffold were tested by scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence microscope. Under high glucose (HG) condition, the effect of BVHP66 scaffold on rat bone marrow mesenchymal stem cells’ (rBMSCs) adherent, proliferative, and differentiate capacities and human umbilical vein endothelial cells’ (HUVECs) proliferative and tube formation capacities was assessed. Finally, the BVHP66 scaffold was applied to fracture of diabetic rats, and its effect on osteogenesis and angiogenesis was evaluated. In vitro, the peptide loaded on the BVHP66 scaffold was in a sustained-release mode of 14 days. The BVHP66 scaffold significantly promoted rBMSCs’ and HUVECs’ proliferation and improved osteogenic differentiation of rBMSCs and tube formation of HUVECs in HG environment. In vivo, the BVHP66 scaffold enhanced osteogenesis and angiogenesis, rescuing the poor fracture healing in diabetic rats. Comparing with single peptide modification, the dual peptide-modified scaffold had a synergetic effect on bone regeneration in vivo. Overall, this study reported a novel BVHP66 scaffold with excellent biocompatibility and bioactive property and its application in diabetic fracture.
Collapse
Affiliation(s)
- Jian Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxing Wei
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ang Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Liu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingxue Sun
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Groleau RR, James TD, Bull SD. The Bull-James assembly: Efficient iminoboronate complex formation for chiral derivatization and supramolecular assembly. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Chatterjee S, Anslyn EV, Bandyopadhyay A. Boronic acid based dynamic click chemistry: recent advances and emergent applications. Chem Sci 2020; 12:1585-1599. [PMID: 34163920 PMCID: PMC8179052 DOI: 10.1039/d0sc05009a] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
Recently, reversible click reactions have found numerous applications in chemical biology, supramolecular chemistry, and biomedical applications. Boronic acid (BA)-mediated cis-diol conjugation is one of the best-studied reactions among them. An excellent understanding of the chemical properties and biocompatibility of BA-based compounds has inspired the exploration of novel chemistries using boron to fuel emergent sciences. This topical review focuses on the recent progress of iminoboronate and salicylhydroxamic-boronate constituted reversible click chemistries in the past decade. We highlight the mechanism of reversible kinetics and its applications in chemical biology, medicinal chemistry, biomedical devices, and material chemistry. This article also emphasizes the fundamental reactivity of these two conjugate chemistries with assorted nucleophiles at variable pHs, which is of utmost importance to any stimuli-responsive biological and material chemistry explorations.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| | - Eric V Anslyn
- Department of Chemistry, University of Texas 1 University Station A1590 Austin Texas 78712 USA
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| |
Collapse
|