1
|
Aweke BS, Yu CH, Shen JS, Wang S, Yap GPA, Chen WC, Ong TG. Binuclear Macrocyclic Silver(I) Complex of a Bis(carbone) Pincer Ligand: Synthesis and Application as a Carbone-Transfer Agent. Inorg Chem 2023; 62:12664-12673. [PMID: 37523291 DOI: 10.1021/acs.inorgchem.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A facile synthesis of a binuclear AgI complex 2 of a bis(carbone) ligand L and its application as a carbone-transfer agent for the generation of other transition-metal complexes of AuI (3), NiII (4), and PdII (5) is presented. Complex 2 was synthesized through multiple synthetic routes under mild reaction conditions using the tetracationic [LH4][OTf·Cl]2 precursor salt, the dicationic [LH2][OTf]2 ylide salt, and the free ligand L. The first two synthesis routes require no prior isolation of the air-, moisture-, and temperature-sensitive free ligand L, thus affording complex 2 with high yield and purity. Multinuclear NMR techniques, high-resolution mass spectrometry, and single-crystal X-ray diffraction analysis confirmed the identity of complex 2 as a binuclear AgI complex of L with a molecular formula of [L2Ag2][OTf]2 and a 16-membered-ring metallomacrocyclic structure. During the transmetalation reaction with AuI, the binuclear nature of complex 2 remains intact to give analogous complex 3 ([L2Au2][OTf]2). However, the dimeric structure was disrupted upon the carbone-transfer reaction with NiII and PdII, yielding mononuclear C-N-C pincer-type complexes 4 ([LNiCl][OTf]) and 5 ([LPdCl][OTf]), respectively. These results demonstrated the versatile use of complex 2 as a carbone-transfer agent to other transition metals regardless of the type or size of the metals or the geometry they prefer.
Collapse
Affiliation(s)
- Bamlaku Semagne Aweke
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Han Yu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Shian Shen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Sheng Wang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Wen-Ching Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
- Department of Medicinal and Applied Chemistry, National Taiwan University 10617 Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Wang Y, Robinson GH. Counterintuitive Chemistry: Carbene Stabilization of Zero-Oxidation State Main Group Species. J Am Chem Soc 2023; 145:5592-5612. [PMID: 36876997 DOI: 10.1021/jacs.2c13574] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Carbenes have evolved from transient laboratory curiosities to a robust, diverse, and surprisingly impactful ligand class. A variety of different carbenes have significantly contributed to the development of low-oxidation state main group chemistry. This Perspective focuses upon advances in the chemistry of carbene complexes containing main group element cores in the formal oxidation state of zero, including their diverse synthetic strategies, unusual bonding and structural motifs, and utility in transition metal coordination chemistry and activation of small molecules.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H Robinson
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
3
|
Dolai R, Kumar R, Elvers BJ, Pal PK, Joseph B, Sikari R, Nayak MK, Maiti A, Singh T, Chrysochos N, Jayaraman A, Krummenacher I, Mondal J, Priyakumar UD, Braunschweig H, Yildiz CB, Schulzke C, Jana A. Carbodicarbenes and Striking Redox Transitions of their Conjugate Acids: Influence of NHC versus CAAC as Donor Substituents. Chemistry 2023; 29:e202202888. [PMID: 36129127 PMCID: PMC10100033 DOI: 10.1002/chem.202202888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/11/2023]
Abstract
Herein, a new type of carbodicarbene (CDC) comprising two different classes of carbenes is reported; NHC and CAAC as donor substituents and compare the molecular structure and coordination to Au(I)Cl to those of NHC-only and CAAC-only analogues. The conjugate acids of these three CDCs exhibit notable redox properties. Their reactions with [NO][SbF6 ] were investigated. The reduction of the conjugate acid of CAAC-only based CDC with KC8 results in the formation of hydrogen abstracted/eliminated products, which proceed through a neutral radical intermediate, detected by EPR spectroscopy. In contrast, the reduction of conjugate acids of NHC-only and NHC/CAAC based CDCs led to intermolecular reductive (reversible) carbon-carbon sigma bond formation. The resulting relatively elongated carbon-carbon sigma bonds were found to be readily oxidized. They were, thus, demonstrated to be potent reducing agents, underlining their potential utility as organic electron donors and n-dopants in organic semiconductor molecules.
Collapse
Affiliation(s)
- Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rahul Kumar
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Pradeep Kumar Pal
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Benson Joseph
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rina Sikari
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Tejender Singh
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Arumugam Jayaraman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - U. Deva Priyakumar
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| |
Collapse
|
4
|
A new facet of amide synthesis by tandem acceptorless dehydrogenation of amines and oxygen transfer of DMSO. J Catal 2023. [DOI: 10.1016/j.jcat.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Wang T, Leung T, Liang Y, Wang C, Ong T. Bis(pyridyl)carbodicarbene supported ruthenium complexes and their catalytic application in
hydrogen‐transfer
reaction. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Tsz‐Fai Leung
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| | - Yu‐Fu Liang
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Chung‐Yu Wang
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Chemistry National Central University Jhong‐Li Taiwan
| | - Tiow‐Gan Ong
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Chemistry National Taiwan University Taipei Taiwan
| |
Collapse
|
6
|
Aweke BS, Yu CH, Zhi M, Chen WC, Yap GPA, Zhao L, Ong TG. A Bis-(carbone) Pincer Ligand and Its Coordinative Behavior toward Multi-Metallic Configurations. Angew Chem Int Ed Engl 2022; 61:e202201884. [PMID: 35293113 DOI: 10.1002/anie.202201884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Carbones are divalent carbon(0) species that contain two lone pairs of electrons. Herein, we have prepared the first known stable and isolable free bis-(carbone) pincer framework with a well-defined solid-state structure. This bis-(carbone) ligand is an effective scaffold for forming monometallic (Ni and Pd) and trinuclear heterometallic complexes with Au-Pd-Au, Au-Ni-Au, and Cu-Ni-Cu configurations. Sophisticated quantum-theoretical analyses found that the metal-metal interactions are too weak to play a significant role in upholding these multi-metallic configurations; rather, the four lone pairs of electrons within the bis-(carbone) framework are the main contributors to the stability of the complexes.
Collapse
Affiliation(s)
- Bamlaku Semagne Aweke
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC.,Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan, ROC
| | - Cheng-Han Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Minna Zhi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Wen-Ching Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC.,Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
7
|
Aweke BS, Yu C, Zhi M, Chen W, Yap GPA, Zhao L, Ong T. A
Bis
‐(carbone) Pincer Ligand and Its Coordinative Behavior toward Multi‐Metallic Configurations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bamlaku Semagne Aweke
- Institute of Chemistry Academia Sinica Taipei Taiwan, ROC
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan, ROC
- Sustainable Chemical Science and Technology (SCST) Taiwan International Graduate Program (TIGP) Academia Sinica Taipei Taiwan, ROC
| | - Cheng‐Han Yu
- Institute of Chemistry Academia Sinica Taipei Taiwan, ROC
| | - Minna Zhi
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Wen‐Ching Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan, ROC
| | - Glenn P. A. Yap
- Department of Chemistry and Biochemistry University of Delaware Newark, DE USA
| | - Lili Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Tiow‐Gan Ong
- Institute of Chemistry Academia Sinica Taipei Taiwan, ROC
- Department of Chemistry National Taiwan University Taipei Taiwan, ROC
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan, ROC
| |
Collapse
|