1
|
Penot C, Maniam KK, Paul S. Electrochemical Characterization of Electrodeposited Copper in Amine CO 2 Capture Media. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1825. [PMID: 38673182 PMCID: PMC11051279 DOI: 10.3390/ma17081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
This study explores the stability of electrodeposited copper catalysts utilized in electrochemical CO2 reduction (ECR) across various amine media. The focus is on understanding the influence of different amine types, corrosion ramifications, and the efficacy of pulse ECR methodologies. Employing a suite of electrochemical techniques including potentiodynamic polarization, linear resistance polarization, cyclic voltammetry, and chronopotentiometry, the investigation reveals useful insights. The findings show that among the tested amines, CO2-rich monoethanolamine (MEA) exhibits the highest corrosion rate. However, in most cases, the rates remain within tolerable limits for ECR operations. Primary amines, notably monoethanolamine (MEA), show enhanced compatibility with ECR processes, attributable to their resistance against carbonate salt precipitation and sustained stability over extended durations. Conversely, tertiary amines such as methyldiethanolamine (MDEA) present challenges due to the formation of carbonate salts during ECR, impeding their effective utilization. This study highlights the effectiveness of pulse ECR strategies in stabilizing ECR. A noticeable shift in cathodic potential and reduced deposit formation on the catalyst surface through periodic oxidation underscores the efficacy of such strategies. These findings offer insights for optimizing ECR in amine media, thereby providing promising pathways for advancements in CO2 emission reduction technologies.
Collapse
Affiliation(s)
- Corentin Penot
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (C.P.); (K.K.M.)
| | - Kranthi Kumar Maniam
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (C.P.); (K.K.M.)
| | - Shiladitya Paul
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (C.P.); (K.K.M.)
- Materials Performance and Integrity Technology Group, TWI, Cambridge CB21 6AL, UK
| |
Collapse
|
2
|
Kumar De S, Won DI, Kim J, Kim DH. Integrated CO 2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis. Chem Soc Rev 2023; 52:5744-5802. [PMID: 37539619 DOI: 10.1039/d2cs00512c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Coupling post-combustion CO2 capture with electrochemical utilization (CCU) is a quantum leap in renewable energy science since it eliminates the cost and energy involved in the transport and storage of CO2. However, the major challenges involved in industrial scale implementation are selecting an appropriate solvent/electrolyte for CO2 capture, modeling an appropriate infrastructure by coupling an electrolyser with a CO2 point source and a separator to isolate CO2 reduction reaction (CO2RR) products, and finally selection of an appropriate electrocatalyst. In this review, we highlight the major difficulties with detailed mechanistic interpretation in each step, to find out the underpinning mechanism involved in the integration of electrochemical CCU to achieve higher-value products. In the past decades, most of the studies dealt with individual parts of the integration process, i.e., either selecting a solvent for CO2 capture, designing an electrocatalyst, or choosing an ideal electrolyte. In this context, it is important to note that solvents such as monoethanolamine, bicarbonate, and ionic liquids are often used as electrolytes in CO2 capture media. Therefore, it is essential to fabricate a cost-effective electrolyser that should function as a reversible binder with CO2 and an electron pool capable of recovering the solvent to electrolyte reversibly. For example, reversible ionic liquids, which are non-ionic in their normal forms, but produce ionic forms after CO2 capture, can be further reverted back to their original non-ionic forms after CO2 release with almost 100% efficiency through the chemical or thermal modulations. This review also sheds light on a focused techno-economic evolution for converting the electrochemically integrated CCU process from a pilot-scale project to industrial-scale implementation. In brief, this review article will summarize a state-of-the-art argumentation of challenges and outcomes over the different segments involved in electrochemically integrated CCU to stimulate urgent progress in the field.
Collapse
Affiliation(s)
- Sandip Kumar De
- Department of Chemistry, UPL University of Sustainable Technology, 402, Ankleshwar - Valia Rd, Vataria, Gujarat 393135, India
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
3
|
Hossain MN, Choueiri RM, Abner S, Chen LD, Chen A. Electrochemical Reduction of Carbon Dioxide at TiO 2/Au Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51889-51899. [PMID: 36347242 DOI: 10.1021/acsami.2c14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we report on the facile synthesis of nanocomposite consisting of TiO2 and Au nanoparticles (NPs) via a tailored galvanic replacement reaction (GRR). The electrocatalytic activity of the synthesized TiO2/Au nanocomposites for CO2 reduction was investigated in an aqueous solution using various electrochemical methods. Our results demonstrated that the TiO2/Au nanocomposites formed through the GRR process exhibited improved catalytic activities for CO2 reduction, while generating more hydrocarbon molecules than the typical formation of CO in contrast to polycrystalline Au. GC analysis and NMR spectroscopy revealed that CO and CH4 were the gas products, whereas HCOO-, CH3COO-, CH3OH, and CH3CH2OH were the liquid products from the CO2 reduction at different cathodic potentials. This remarkable change was further studied using the density functional theory (DFT) calculations, showing that the TiO2/Au nanocomposites may increase the binding energy of the formed ·CO intermediate and reduce the free energy compared to Au, thus favoring the downstream generation of multicarbon products. The TiO2/Au nanocomposites have high catalytic activity and excellent stability and are easy to fabricate, indicating that the developed catalyst has potential application in the electrochemical reduction of CO2 to value-added products.
Collapse
Affiliation(s)
- M Nur Hossain
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Rachelle M Choueiri
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Sharon Abner
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Leanne D Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Li M, Yang K, Abdinejad M, Zhao C, Burdyny T. Advancing integrated CO 2 electrochemical conversion with amine-based CO 2 capture: a review. NANOSCALE 2022; 14:11892-11908. [PMID: 35938674 DOI: 10.1039/d2nr03310k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dioxide (CO2) electrolysis is a promising route to utilise captured CO2 as a building block to produce valuable feedstocks and fuels such as carbon monoxide and ethylene. Very recently, CO2 electrolysis has been proposed as an alternative process to replace the amine recovery unit of the commercially available amine-based CO2 capture process. This process would replace the most energy-intensive unit operation in amine scrubbing while providing a route for CO2 conversion. The key enabler for such process integration is to develop an efficient integrated electrolyser that can convert CO2 and recover the amine simultaneously. Herein, this review provides an overview of the fundamentals and recent progress in advancing integrated CO2 conversion in amine-based capture media. This review first discusses the mechanisms for both CO2 absorption in the capture medium and electrochemical conversion of the absorbed CO2. We then summarise recent advances in improving the efficiency of integrated electrolysis via innovating electrodes, tailoring the local reaction environment, optimising operation conditions (e.g., temperatures and pressures), and modifying cell configurations. This review is concluded with future research directions for understanding and developing integrated CO2 electrolysers.
Collapse
Affiliation(s)
- Mengran Li
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Kailun Yang
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Maryam Abdinejad
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Thomas Burdyny
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
5
|
Jerng SE, Gallant BM. Electrochemical reduction of CO 2 in the captured state using aqueous or nonaqueous amines. iScience 2022; 25:104558. [PMID: 35747389 PMCID: PMC9209719 DOI: 10.1016/j.isci.2022.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
CO2 capture and its electrochemical conversion have historically developed as two distinct technologies and scientific fields. Each process possesses unique energy penalties, inefficiencies, and costs, which accrue along the mitigation pathway from emissions to product. Recently, the concept of integrating CO2 capture and electrochemical conversion, or "electrochemically reactive capture," has aroused attention following early laboratory-scale proofs-of-concept. However, the integration of the two processes introduces new complexities at a basic science and engineering level, many of which have yet to be clearly defined. The key parameters to guide reaction, electrolyte, electrode, and system design would, therefore, benefit from delineation. To begin this effort, this perspective outlines several crucial physicochemical and electrochemical considerations, where we argue that the absence of basic knowledge leaves the field of designing metaphorically in the dark. The considerations make clear that there is ample need for fundamental science that can better inform design, following which the potential impacts of integration can be rigorously assessed beyond what is possible at present.
Collapse
Affiliation(s)
- Sung Eun Jerng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Betar M. Gallant
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Sullivan I, Goryachev A, Digdaya IA, Li X, Atwater HA, Vermaas DA, Xiang C. Coupling electrochemical CO2 conversion with CO2 capture. Nat Catal 2021. [DOI: 10.1038/s41929-021-00699-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Abdinejad M, Hossain MN, Kraatz HB. Homogeneous and heterogeneous molecular catalysts for electrochemical reduction of carbon dioxide. RSC Adv 2020; 10:38013-38023. [PMID: 35515175 PMCID: PMC9057206 DOI: 10.1039/d0ra07973a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022] Open
Abstract
Carbon dioxide (CO2) is a greenhouse gas whose presence in the atmosphere significantly contributes to climate change. Developing sustainable, cost-effective pathways to convert CO2 into higher value chemicals is essential to curb its atmospheric presence. Electrochemical CO2 reduction to value-added chemicals using molecular catalysis currently attracts a lot of attention, since it provides an efficient and promising way to increase CO2 utilization. Introducing amino groups as substituents to molecular catalysts is a promising approach towards improving capture and reduction of CO2. This review explores recently developed state-of-the-art molecular catalysts with a focus on heterogeneous and homogeneous amine molecular catalysts for electroreduction of CO2. The relationship between the structural properties of the molecular catalysts and CO2 electroreduction will be highlighted in this review. We will also discuss recent advances in the heterogeneous field by examining different immobilization techniques and their relation with molecular structure and conductive effects.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - M Nur Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| |
Collapse
|