1
|
Bong JH, Dombovski A, Birus R, Cho S, Lee M, Pyun JC, Jose J. Covalent coupling of functionalized outer membrane vesicles (OMVs) to gold nanoparticles. J Colloid Interface Sci 2024; 663:227-237. [PMID: 38401443 DOI: 10.1016/j.jcis.2024.02.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024]
Abstract
Outer membrane vesicle-functionalized nanoparticles (OMV-NPs) have attracted significant interest, especially regarding drug delivery applications and vaccines. Here, we report on novel OMV-NPs by applying bioorthogonal click reaction for encapsulating gold nanoparticles (NPs) within outer membrane vesicles (OMVs) by covalent coupling. For this purpose, outer membrane protein A (OmpA), abundant in large numbers (due to 100,000 copies/cell [1]) in OMVs, was modified via the incorporation of the unnatural amino acid p-azidophenylalanine. The azide group was covalently coupled to alkyne-functionalized NPs after incorporation into OmpA. A simplified procedure using low-speed centrifugation (1,000 x g) was developed for preparing OMV-NPs. The OMV-NPs were characterized by zeta potential, Laurdan-based lipid membrane dynamics studies, and the enzymatic activity of functionalized OMVs with surface-displayed nicotinamide adenine dinucleotide oxidase (Nox). In addition, OMVs from attenuated bacteria (ClearColiTM BL21(DE3), E. coli F470) with surface-displayed Nox or antibody fragments were prepared and successfully coupled to AuNPs. Finally, OMV-NPs displaying single-chain variable fragments from a monoclonal antibody directed against epidermal growth factor receptor were applied to demonstrate the feasibility of OMV-NPs for tumor cell targeting.
Collapse
Affiliation(s)
- Ji-Hong Bong
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany; Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, 03722 Seoul, Republic of Korea; Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Alexander Dombovski
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Robin Birus
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Sua Cho
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, 03722 Seoul, Republic of Korea.
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany.
| |
Collapse
|
2
|
Benedetto A. Ionic liquids meet lipid bilayers: a state-of-the-art review. Biophys Rev 2023; 15:1909-1939. [PMID: 38192351 PMCID: PMC10771448 DOI: 10.1007/s12551-023-01173-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
In the past 25 years, a vast family of complex organic salts known as room-temperature ionic liquids (ILs) has received increasing attention due to their potential applications. ILs are composed by an organic cation and either an organic or inorganic anion, and possess several intriguing properties such as low vapor pressure and being liquid around room temperature. Several biological studies flagged their moderate-to-high (cyto)-toxicity. Toxicity is, however, also a synonym of affinity, and this boosted a series of biophysical and chemical-physical investigations aimed at exploiting ILs in bio-nanomedicine, drug-delivery, pharmacology, and bio-nanotechnology. Several of these investigations focused on the interaction between ILs and lipid membranes, aimed at determining the microscopic mechanisms behind their interaction. This is the focus of this review work. These studies have been carried out on a variety of different lipid bilayer systems ranging from 1-lipid to 5-lipids systems, and also on cell-extracted membranes. They have been carried out at different chemical-physical conditions and by the use of a number of different approaches, including atomic force microscopy, neutron and X-ray scattering, dynamic light scattering, differential scanning calorimetry, surface quartz microbalance, nuclear magnetic resonance, confocal fluorescence microscopy, and molecular dynamics simulations. The aim of this "2023 Michèle Auger Award" review work is to provide the reader with an up-to-date overview of this fascinating research field where "ILs meet lipid bilayers (aka biomembranes)," with the aim to boost it further and expand its cross-disciplinary edges towards novel high-impact ideas/applications in pharmacology, drug delivery, biomedicine, and bio-nanotechnology.
Collapse
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Science, University of Roma Tre, Rome, Italy
- Laboratory for Neutron Scattering, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
3
|
Wegner T, Laskar R, Glorius F. Lipid mimetics: A versatile toolbox for lipid biology and beyond. Curr Opin Chem Biol 2022; 71:102209. [PMID: 36122522 DOI: 10.1016/j.cbpa.2022.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Being the principal component of biological membranes lipids are essential building blocks of life. Given their huge biological importance, the investigation of lipids, their properties, interactions and metabolic pathways is of prime importance for the fundamental understanding of living cells and organisms as well as the emergence of diseases. Different strategies have been applied to investigate lipid-mediated biological processes, one of them being the use of lipid mimetics. They structurally resemble their natural counterparts but are equipped with functionality that can be used to probe or manipulate lipid-mediated biological processes and biomembranes. Lipid mimetics therefore constitute an indispensable toolbox for lipid biology and membrane research but also beyond for potential applications in medicine or synthetic biology. Herein, we highlight recent advances in the development and application of lipid-mimicking compounds.
Collapse
Affiliation(s)
- Tristan Wegner
- Institute of Organic Chemistry, University of Münster, Münster, Germany
| | - Ranjini Laskar
- Institute of Organic Chemistry, University of Münster, Münster, Germany
| | - Frank Glorius
- Institute of Organic Chemistry, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
Merging structural frameworks of imidazolium, pyridinium, and cholinium ionic liquids with cinnamic acid to tune solution state behavior and properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Gupta R, Sharma VK, Gupta J, Ghosh SK. 1,3 Dialkylated Imidazolium Ionic Liquid Causes Interdigitated Domains in a Phospholipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3412-3421. [PMID: 35263113 DOI: 10.1021/acs.langmuir.1c03160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic imidazolium-based ionic liquids (ILs) have proven their efficacy in altering the membrane integrity and dynamics. The present article investigates the phase-separated domains in a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane induced by 1,3 dialkylated imidazolium IL. Isotherm measurements on DPPC monolayers formed at the air-water interface have shown a decrease in the mean molecular area with the addition of this IL. The positive value of the excess Gibbs free energy of mixing indicates an unfavorable mixing of the IL into the lipid. This leads to IL-induced phase-separated domains in the multilayer of the lipid confirmed by the occurrence of two sets of equidistance peaks in the X-ray reflectivity data. The electron density profile along the surface normal obtained by the swelling method shows the bilayer thickness of the newly formed IL-rich phase to be substantially lower (∼34 Å) than the DPPC phase (∼45.8 Å). This IL-rich phase has been confirmed to be interdigitated, showing an enhanced electron density in the tail region due to the overlapping hydrocarbon chains. Differential scanning calorimetry measurements showed that the incorporation of IL enhances the fluidity of the lipid bilayer. Therefore, the study indicates the formation of an interdigitated phase with a lower order compared to the gel phase in the DPPC membrane supplemented with the IL.
Collapse
Affiliation(s)
- Ritika Gupta
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, G. B. Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, G. B. Nagar, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
6
|
Liu Z, Lin L, Li T, Kinnun J, Hong K, Ma YZ, Sacci RL, Katsaras J, Carrillo JM, Doughty B, Collier CP. Squeezing Out Interfacial Solvation: The Role of Hydrogen-Bonding in the Structural and Orientational Freedom of Molecular Self-Assembly. J Phys Chem Lett 2022; 13:2273-2280. [PMID: 35239358 DOI: 10.1021/acs.jpclett.1c03941] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioinspired membrane molecules with improved physical properties and enhanced stability can serve as functional models for conventional lipid or amphiphilic species. Importantly, these molecules can also provide new insights into emergent phenomena that manifest during self-assembly at interfaces. Here, we elucidate the structural response and mechanistic steps underlying the self-assembly of the amphiphilic, charged oligodimethylsiloxane imidazolium cation (ODMS-MIM+) at the air-aqueous interface using Langmuir trough methods with coincident surface-specific vibrational sum-frequency generation (SFG) spectroscopy. We find evidence for a new compression-induced desolvation step that precedes commonly known disordered-to-ordered phase transitions to form nanoscopic assemblies. The experimental data was supported by atomistic molecular dynamics (MD) simulations to provide a detailed mechanistic picture underlying the assembly and the role of water in these phase transitions. The sensitivity of the hydrophobic ODMS tail conformations to compression─owing to distinct water-ODMS interactions and tail-tail solvation properties─offers new strategies for the design of interfaces that can be further used to develop soft-matter electronics and low-dimensional materials using physical and chemical controls.
Collapse
Affiliation(s)
- Zening Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jacob Kinnun
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Charles Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
7
|
Kriegler S, Paulisch TO, Wegner T, Glorius F, Winter R. Bipolar Imidazolium-Based Lipid Analogues for Artificial Archaeosomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11996-12006. [PMID: 34619962 DOI: 10.1021/acs.langmuir.1c01565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Archaeal lipids have harvested biomedical and biotechnological interest because of their ability to form membranes with low permeability and enhanced temperature and pressure stability. Because of problems in isolating archaeal lipids, chemical synthesis appears to be a suitable means of producing model lipids that mimic the biological counterparts. Here, we introduce a new concept: we synthesized bipolar alkylated imidazolium salts of different chain lengths (BIm10-32) and studied their structure and lyotropic phase behavior. Furthermore, mixtures of the bolalipid analogues with phospholipid model biomembranes of diverse complexity were studied. DSC, fluorescence and FTIR spectroscopy, confocal fluorescence microscopy, DLS, SAXS, and TEM were used to reveal changes in lipid phase behavior, fluidity, the lipid's conformational order, and membrane morphology over a wide range of temperatures and for selected pressures. It could be shown that the long-chain BImN32 can form monolayer sheets. Integrated in phospholipid membranes, it reveals a fluidizing effect. Here, the two polar head groups, connected by a long alkyl chain, enable the integration into the bilayer. Interestingly, addition of BImN32 to fluid DPPC liposomes increased the lipid packing markedly, rendering the membrane system more stable at higher temperatures. The membrane system is also stable against compression as indicated by the high-pressure stability of the system, mimicking an archaeal lipid-like behavior. BImN32 incorporation into raft-like anionic model biomembranes led to marked changes in lateral membrane organization, topology, and fusogenicity of the membrane. Overall, it was found that long-chain imidazolium-based bolalipid analogues can help adjust membrane's biophysical properties, while the imidazolium headgroup provides the ability for crucial electrostatic interaction for vesicle fusion or selective interaction with membrane-related signaling molecules and polypeptides in a synthetically tractable manner. The results obtained may help to develop new approaches for rational design of extremophilic bolalipid-based liposomes for various applications, including delivery of drugs and vaccines.
Collapse
Affiliation(s)
- Simon Kriegler
- Department of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto Hahn Str. 4a, D-44221 Dortmund, Germany
| | - Tiffany O Paulisch
- Institute of Organic Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Tristan Wegner
- Institute of Organic Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Institute of Organic Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto Hahn Str. 4a, D-44221 Dortmund, Germany
| |
Collapse
|
8
|
Ghaed-Sharaf T, Ghatee MH. Synergistic aggregation of the ibuprofenate anion and a a double-strand imidazolium cation into vesicles for drug delivery: a simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Zimmermann A, Jaber QZ, Koch J, Riebe S, Vallet C, Loza K, Hayduk M, Steinbuch KB, Knauer SK, Fridman M, Voskuhl J. Luminescent Amphiphilic Aminoglycoside Probes to Study Transfection. Chembiochem 2021; 22:1563-1567. [PMID: 33410196 PMCID: PMC8248372 DOI: 10.1002/cbic.202000725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Indexed: 12/26/2022]
Abstract
We report the characterization of amphiphilic aminoglycoside conjugates containing luminophores with aggregation-induced emission properties as transfection reagents. These inherently luminescent transfection vectors are capable of binding plasmid DNA through electrostatic interactions; this binding results in an emission "on" signal due to restriction of intramolecular motion of the luminophore core. The luminescent cationic amphiphiles effectively transferred plasmid DNA into mammalian cells (HeLa, HEK 293T), as proven by expression of a red fluorescent protein marker. The morphologies of the aggregates were investigated by microscopy as well as ζ-potential and dynamic light-scattering measurements. The transfection efficiencies using luminescent cationic amphiphiles were similar to that of the gold-standard transfection reagent Lipofectamine® 2000.
Collapse
Affiliation(s)
- Alexander Zimmermann
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Qais Z. Jaber
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Johannes Koch
- Center for Medical Biotechnology (ZMB)University of Duisburg EssenUniversitätsstrasse 245141EssenGermany
| | - Steffen Riebe
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Cecilia Vallet
- Institute for Molecular BiologyCentre for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 245117EssenGermany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Matthias Hayduk
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Kfir B. Steinbuch
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Shirley K. Knauer
- Institute for Molecular BiologyCentre for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 245117EssenGermany
| | - Micha Fridman
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Jens Voskuhl
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| |
Collapse
|
10
|
Egorova KS, Posvyatenko AV, Larin SS, Ananikov V. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021; 49:1201-1234. [PMID: 33476366 PMCID: PMC7897475 DOI: 10.1093/nar/gkaa1280] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
11
|
Kumari P, Pillai VVS, Benedetto A. Mechanisms of action of ionic liquids on living cells: the state of the art. Biophys Rev 2020; 12:1187-1215. [PMID: 32936423 PMCID: PMC7575683 DOI: 10.1007/s12551-020-00754-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of "ILs, biomolecules, and cells."
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
- School of Physics, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Visakh V S Pillai
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
- School of Physics, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Antonio Benedetto
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
- School of Physics, University College Dublin, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
- Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232, Villigen, Switzerland.
| |
Collapse
|