1
|
Behar AE, Maayan G. A cocktail of Cu 2+- and Zn 2+-peptoid-based chelators can stop ROS formation for Alzheimer's disease therapy. Chem Sci 2024:d4sc04313h. [PMID: 39464602 PMCID: PMC11503657 DOI: 10.1039/d4sc04313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
The formation of reactive oxygen species (ROS) in the brain is a major cause of neuropathologic degradation associated with Alzheimer's Disease (AD). It has been suggested that the copper (Cu)-amyloid-β (Aβ) peptide complex can lead to ROS formation in the brain. An external chelator for Cu that can extract Cu from the CuAβ complex should inhibit the formation of ROS, making Cu chelation an excellent therapeutic approach for AD. Such a chelator should possess high selectivity for Cu over zinc (Zn), which is also present within the synaptic cleft. However, such selectivity is generally hard to achieve in one molecule due to the similarities in the binding preferences of these two metal ions. As an alternative to monotherapy (where Cu extraction is performed using a single chelator), herein we describe a variation of combination therapy - a novel cocktail approach, which is based on the co-administration of two structurally different peptidomimetic chelators, aiming to target both Cu2+ and Zn2+ ions simultaneously but independently from each other. Based on rigorous spectroscopic experiments, we demonstrate that our peptidomimetic cocktail allows, for the first time, the complete and immediate inhibition of ROS production by the CuAβ complex in the presence of Zn2+. In addition, we further demonstrate the high stability of the cocktail under simulated physiological conditions and its resistance to proteolytic degradation by trypsin and report the water/n-octanol partition coefficient, initially assessing the blood-brain barrier (BBB) permeability potential of the chelators.
Collapse
Affiliation(s)
- Anastasia E Behar
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City 3200008 Haifa Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City 3200008 Haifa Israel
| |
Collapse
|
2
|
Pahar S, Maayan G. An intramolecular cobalt-peptoid complex as an efficient electrocatalyst for water oxidation at low overpotential. Chem Sci 2024; 15:12928-12938. [PMID: 39148784 PMCID: PMC11323339 DOI: 10.1039/d4sc01182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Water electrolysis is the simplest way to produce hydrogen, as a clean renewable fuel. However, the high overpotential and slow kinetics hamper its applicability. Designing efficient and stable electrocatalysts for water oxidation (WO), which is the first and limiting step of the water splitting process, can overcome this limitation. However, the development of such catalysts based on non-precious metal ions is still challenging. Herein we describe a bio-inspired Co(iii)-based complex i.e., a stable and efficient molecular electrocatalyst for WO, constructed from a peptidomimetic oligomer called peptoid - N-substituted glycine oligomer - bearing two binding ligands, terpyridine and bipyridine, and one ethanolic group as a proton shuttler. Upon binding of a cobalt ion, this peptoid forms an intramolecular Co(iii) complex, that acts as an efficient electrocatalyst for homogeneous WO in aqueous phosphate buffer at pH 7 with a high faradaic efficiency of up to 92% at an overpotential of about 430 mV, which is the lowest reported for Co-based homogeneous WO electrocatalysts to date. We demonstrated the high stability of the complex during electrocatalytic WO and that the ethanolic side chain plays a key role in the stability and activity of the complex and also in facilitating water binding, thus mimicking an enzymatic second coordination sphere.
Collapse
Affiliation(s)
- Suraj Pahar
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| |
Collapse
|
3
|
Ghosh P. Boronic Acid-Linked Cell-Penetrating Peptide for Protein Delivery. ACS OMEGA 2024; 9:19051-19056. [PMID: 38708278 PMCID: PMC11064025 DOI: 10.1021/acsomega.3c09689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Studying functional protein delivery into live cells is important, ranging from fundamental research to therapeutics. Cell-penetrating peptides (CPPs) are known to deliver proteins with applauded efficacy and have gained importance for applications in protein therapeutics and exploration of versatile cellular mechanisms. The primary aim of the work is to design a CPP as a tool and delivery vehicle for macromolecules, including proteins. In this work, boronic acid-linked cyclic deca arginine (cR10) is reported as an efficient CPP that exhibited 3-fold higher delivery of chemically synthesized ubiquitin (Ub) than pristine cR10-linked Ub, examined with live U2OS cells. As a futuristic plan, an artificial intelligence machine learning-based rationale has been designed and proposed.
Collapse
|
4
|
Ghosh S, Mahato S, Dutta T, Ahamed Z, Ghosh P, Roy P. Highly selective, sensitive and biocompatible rhodamine-based isomers for Al 3+ detection: A comparative study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123455. [PMID: 37813088 DOI: 10.1016/j.saa.2023.123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Selective detection of a metal ion with high selectivity is of great importance to understand its existence and its role in many chemical and biological processes. We report here the synthesis, characterization and Al3+ sensing properties of two rhodamine-based isomers, (E)-2-((2-(allyloxy)benzylidene)amino)ethyl)-3',6'-bis(ethylamine)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (L-2-oxy) and (E)-2-((4-(allyloxy)benzylidene)amino)ethyl)-3',6'-bis(ethylamine)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (L-4-oxy). L-2-oxyand L-4-oxy show pink coloration, significant enhancement in absorbance at 530 nm and fluorescence intensity at 553 nm in the presence of Al3+ among several cations. Quantum yield and lifetime of the probes increase in the presence of Al3+. LOD values have been determined as low as ∼1.0 nM for both the isomers. DFT study suggests that the cation induces opening of spirolactam ring resulting in the changes of the rhodamine dyes. Additional reason could be Chelation Enhanced Fluorescence (CHEF) effect due to the subsequent chelation of the metal ion. Between two isomers, L-2-oxy displays better sensing ability towards Al3+ in terms of fluorescence enhancement, limit of detection, lifetime enhancement. Both the probes have been utilized in cell imaging studies using rat skeletal myoblast cell line (L6 cell line).
Collapse
Affiliation(s)
- Sneha Ghosh
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Shephali Mahato
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Tiasha Dutta
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Zisan Ahamed
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
5
|
Behar AE, Maayan G. A Peptoid-Chelator Selective to Cu 2+ That Can Extract Copper from Metallothionein-2 and Lead to the Production of ROS. Antioxidants (Basel) 2023; 12:2031. [PMID: 38136151 PMCID: PMC10741037 DOI: 10.3390/antiox12122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Copper is an essential metal ion that is involved in critical cellular processes, but which can also exhibit toxic effects through its ability to catalyze reactive oxygen species (ROS) formation. Dysregulation of copper homeostasis has been implicated in the progression of several diseases, including cancer. A novel therapeutic approach, extensively studied in recent years, is to capitalize on the increased copper uptake and dependency exhibited by cancer cells and to promote copper-associated ROS production within the tumor microenvironment, leading to the apoptosis of cancer cells. Such an effect can be achieved by selectively chelating copper from copper-bearing metalloproteins in cancer cells, thereby forming a copper-chelator complex that produces ROS and, through this, induces oxidative stress and initiates apoptosis. Herein, we describe a peptoid chelator, TB, that is highly suitable to carry this task. Peptoids are N-substituted glycine oligomers that can be efficiently synthesized on a solid support and are also biocompatible; thus, they are considered promising drug candidates. We show, by rigorous spectroscopic techniques, that TB is not only selective for Cu(II) ions, but can also effectively extract copper from metallothionein-2, and the formed complex CuTB can promote ROS production. Our findings present a promising first example for the future development of peptoid-based chelators for applications in anti-cancer chelation therapy, highlighting the potential for the prospect of peptoid chelators as therapeutics.
Collapse
Affiliation(s)
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City, Haifa 3200008, Israel
| |
Collapse
|
6
|
Behar AE, Maayan G. The First Cu(I)-Peptoid Complex: Enabling Metal Ion Stability and Selectivity via Backbone Helicity. Chemistry 2023; 29:e202301118. [PMID: 37221918 DOI: 10.1002/chem.202301118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Stabilization of Cu(I) is ubiquitous within native copper proteins. Understanding how to stabilize Cu(I) within synthetic biomimetic systems is therefore desired towards biological applications. Peptoids are an important class of peptodomimetics, that can bind metal ions and stabilize them in their high oxidation state. Thus, to date, they were not used for Cu(I) binding. Here we show how the helical peptoid hexamer, having two 2,2'-bipyridine (Bipy) groups that face the same side of the helix, forms the intramolecular air stable Cu(I) complex. Further study of the binding site by rigorous spectroscopic techniques suggests that Cu(I) is tetracoordinated, binding to only three N atoms from the Bipy ligands and to the N-terminus of the peptoid's backbone. A set of control peptoids and experiments indicates that the Cu(I) stability and selectivity are dictated by the intramolecular binding, forced by the helicity of the peptoid, which can be defined as the second coordination sphere of the metal center.
Collapse
Affiliation(s)
- Anastasia E Behar
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
7
|
Ghosh P, Ruan G, Fridman N, Maayan G. Amide bond hydrolysis of peptoids. Chem Commun (Camb) 2022; 58:9922-9925. [PMID: 35979818 DOI: 10.1039/d2cc02717h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating a chiral non-coordinating substitution at the N-terminal end within peptoids facilitates regio-selective amide bond hydrolysis mediated by a transition metal ion and/or an acidic buffer as evident by X-ray crystallographic analysis, supported by ESI-MS. This opens up a new direction for peptidomimetic compounds towards future application in chemistry, biology and medicine.
Collapse
Affiliation(s)
- Pritam Ghosh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| | - Guilin Ruan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| |
Collapse
|
8
|
Maity D, Bari S, Ghosh P, Roy P. Turning a fluorescent probe for Al3+ into a pH sensor by introducing Cl-substitution. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Sharma H, Tamrakar A, Maddeshiya T, Shakya PR, Tiwari KK, Pandey MD, Pandey R. A Zinc (II) Complex Comprising Aminoethyl-Nitropyridine Derived N,N,O-Donor Schiff Base Ligand Serves as an Efficient ON-OFF Probe for Cu (II). LUMINESCENCE 2022. [PMID: 35777923 DOI: 10.1002/bio.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022]
Abstract
A new fluorescent zinc (II) complex based probe 1 encompassing a Schiff base (E)-2-methoxy-6-((2-(5-nitropyridin-2-ylamino)ethylimino)methyl)phenol (HL) has been designed, synthesized and used for the highly selective detection of Cu2+ . Ligand HL and complex 1 have been characterized by various spectroscopic techniques such as 1 H, 13 C-NMR, FT-IR, HR-MS, UV/vis and fluorescence studies. Ligand HL did not exhibit any considerable change in fluorescence in presence of various cations. Notably, its Zn (II)-complex 1 exhibited highly selective 'Turn-OFF' fluorescence signalling toward Cu2+ which remains uninterrupted with competing analytes. Probe 1 interacts with Cu2+ in 1:2 (1: Cu2+ ) stoichiometry as estimated through Job's plot. Moreover, selectivity of 1 was further confirmed through interaction of 1+ Cu2+ complex with some possible interfering metal ions inducing insignificant response. Additionally, association and quenching constant have been determined to be 3.30 × 104 M-1 and 0.21× 105 M-1 through Benesi-Hildebrand method and Stern-Volmer plot, respectively.
Collapse
Affiliation(s)
- Himani Sharma
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| | - Arpana Tamrakar
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pawan Raj Shakya
- Department of Chemistry, Tribhuvan University, Padmakanya Multiple Campus, Kathmandu, Nepal
| | - Kamal Kant Tiwari
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rampal Pandey
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| |
Collapse
|
10
|
Hazra A, Ghosh P, Roy P. A rhodamine based dual chemosensor for Al 3+ and Hg 2+: Application in the construction of advanced logic gates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120905. [PMID: 35091182 DOI: 10.1016/j.saa.2022.120905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
A rhodamine-based compound (RBO), which has been constructed from the reaction between N-(rhodamine-6G)lactam-ethylenediamine and 2,1,3-benzoxadiazole-4-carbaldehyde, is reported here as a selective chemosensor for both Al3+ and Hg2+ ions in 10 mM HEPES buffer in water:ethanol (1:9, pH = 7.4). Absorption intensity of RBO increases considerably at 528 nm with these cations. It shows fluorescence enhancement at 550 nm by 1140- and 524-fold in the presence of Al3+ and Hg2+, respectively. LOD has been determined as 6.54 and 16.0 nM for Al3+ and Hg2+, respectively. Quantum yield and lifetime of RBO enhances with these metal ions. Fluorescence intensity of Al-probe complex or Hg-probe complex is quenched in the presence of fluoride or sulfide ion, respectively, opening a path for the construction logic gates. DFT analysis has been used to understand the spectral transitions. We have constructed a systematic development from single to five inputs complex circuit, and for the first time a time dependent five input complex logic circuit is reported herein.
Collapse
Affiliation(s)
- Ananta Hazra
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Pritam Ghosh
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
11
|
Behar AE, Sabater L, Baskin M, Hureau C, Maayan G. A Water-Soluble Peptoid Chelator that Can Remove Cu 2+ from Amyloid-β Peptides and Stop the Formation of Reactive Oxygen Species Associated with Alzheimer's Disease. Angew Chem Int Ed Engl 2021; 60:24588-24597. [PMID: 34510664 DOI: 10.1002/anie.202109758] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Cu bound to amyloid-β (Aβ) peptides can act as a catalyst for the formation of reactive oxygen species (ROS), leading to neuropathologic degradation associated with Alzheimer's disease (AD). An excellent therapeutic approach is to use a chelator that can selectively remove Cu from Cu-Aβ. This chelator should compete with Zn2+ ions (Zn) that are present in the synaptic cleft while forming a nontoxic Cu complex. Herein we describe P3, a water-soluble peptidomimetic chelator that selectively removes Cu2+ from Cu-Aβ in the presence of Zn and prevent the formation of ROS even in a reductive environment. We demonstrate, based on extensive spectroscopic analysis, that although P3 extracts Zn from Cu,Zn-Aβ faster than it removes Cu, the formed Zn complexes are kinetic products that further dissociate, while CuP3 is formed as an exclusive stable thermodynamic product. Our unique findings, combined with the bioavailability of peptoids, make P3 an excellent drug candidate in the context of AD.
Collapse
Affiliation(s)
- Anastasia E Behar
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Laurent Sabater
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, 31077, Toulouse, France
| | - Maria Baskin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, 31077, Toulouse, France
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| |
Collapse
|
12
|
Behar AE, Sabater L, Baskin M, Hureau C, Maayan G. A Water‐Soluble Peptoid Chelator that Can Remove Cu
2+
from Amyloid‐β Peptides and Stop the Formation of Reactive Oxygen Species Associated with Alzheimer's Disease. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anastasia E. Behar
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City 3200008 Haifa Israel
| | - Laurent Sabater
- CNRS LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne 31077 Toulouse France
- Université de Toulouse 31077 Toulouse France
| | - Maria Baskin
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City 3200008 Haifa Israel
| | - Christelle Hureau
- CNRS LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne 31077 Toulouse France
- Université de Toulouse 31077 Toulouse France
| | - Galia Maayan
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City 3200008 Haifa Israel
| |
Collapse
|
13
|
Ruan G, Engelberg L, Ghosh P, Maayan G. A unique Co(iii)-peptoid as a fast electrocatalyst for homogeneous water oxidation with low overpotential. Chem Commun (Camb) 2021; 57:939-942. [DOI: 10.1039/d0cc06912d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptoid trimer incorporating terpyridine and ethanol forms an intermolecular cobalt(iii) complex, which performs as a soluble electrocatalyst for water oxidation with a minimal overpotential of 350 mV and a high turnover frequency of 108 s−1.
Collapse
Affiliation(s)
- Guilin Ruan
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Lee Engelberg
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Pritam Ghosh
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| |
Collapse
|