1
|
Park J, Han HS. Organoborane Se and Te Precursors for Controlled Modulation of Reactivity in Nanomaterial Synthesis. ACS NANO 2024; 18:15487-15498. [PMID: 38842500 PMCID: PMC11269524 DOI: 10.1021/acsnano.3c13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
To exploit the distinctive optoelectrical properties of nanomaterials, precise control over the size, morphology, and interface structure is essential. Achieving a controlled synthesis demands precursors with tailored reactivity and optimal reaction temperatures. Here, we introduce organoborane-based selenium and tellurium precursors borabicyclononane-selenol (BBN-SeH) and tellurol (BBN-TeH). The reactivity of these precursors can be modified by commercially available additives, covering a wide range of intermediate reactivity and filling significant reactivity gaps in existing options. By allowing systematic adjustment of growth conditions, they achieve the controlled growth of quantum dots of various sizes and materials. Operating via a surface-assisted conversion mechanism, these precursors rely on surface coordination for activation and undergo quantitative deposition on coordinating surfaces. These properties allow precise control over the radial distribution and density of different chalcogenide atoms within the nanoparticles. Diborabicyclononanyl selane ((BBN)2Se), an intermediate from the BBN-SeH synthesis, can also serve as a selenium precursor. While BBN-SeH suppresses nucleation, (BBN)2Se exhibits efficient nucleation under specific conditions. By leveraging these distinct activation behaviors, we achieved a controlled synthesis of thermally stable nanoplates with different thicknesses. This study not only bridges critical reactivity gaps but also provides a systematic methodology for precise nanomaterial synthesis.
Collapse
Affiliation(s)
- Joonhyuck Park
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Zhang Y, He S, Zhang Q, Zhang H, Zhou J, Yang X, Wei Q, Chen L. Pre-phase transition of a Cu 2-xS template enables polymorph selective synthesis of MS (M = Zn, Cd, Mn) nanocrystals via cation exchange reactions. NANOSCALE 2024; 16:1260-1271. [PMID: 38126257 DOI: 10.1039/d3nr05253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Utilization of copper-deficient Cu2-xS nanocrystals (NCs) with diverse crystal phases and stoichiometries as cation exchange (CE) templates is a potential route to overcome the current limitations in the polymorph selective synthesis of desired nanomaterials. Among the Cu2-xS NCs, covellite CuS is emerging as an attractive CE template to produce complicated and metastable metal sulfide NCs. The presence of a reducing agent is essential to induce a phase transition of CuS into other Cu2-xS phases prior to the CE reactions. Nevertheless, the effect of the reducing agent on the phase transition of CuS, especially into the hexagonal close packing (hcp) phase and the cubic close packing (ccp) phase, has been scarcely exploited, but it is highly important for the polymorphic production of metal sulfides with the wurtzite phase and zinc blende phase. Herein, we report a reducing agent dependent pre-phase transition of CuS nanodisks (NDs) into hcp and ccp Cu2-xS NCs. 1-Dodecanethiol molecules and oleylamine molecules selectively reduced CuS NDs into hcp djurleite Cu1.94S NDs and ccp digenite Cu1.8S NCs. Afterward, the hcp Cu1.94S NDs and ccp Cu1.8S NCs were exchanged by Zn2+/Cd2+/Mn2+, and the wurtzite phase and the zinc blende phase of ZnS, CdS, and MnS NCs were produced. Without the pre-phase transition, direct CE reactions of CuS NDs are incapable of synthesizing the above wurtzite and zinc blende metal sulfide NCs. Therefore, our findings suggest the importance of the pre-phase transition of the CE template in polymorphic syntheses, holding great promise in the fabrication of other polymorphic nanomaterials with novel physical and chemical properties.
Collapse
Affiliation(s)
- Yan Zhang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
- School of Naval Architecture and Maritime, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China
| | - Shaobo He
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Qingxia Zhang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Hongtao Zhang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Jinchen Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Xing Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Qinhong Wei
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Lihui Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316022, China
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, China
| |
Collapse
|
3
|
Hong Y, Yu C, Je H, Park JY, Kim T, Baik H, Tomboc GM, Kim Y, Ha JM, Joo J, Kim CW, Woo HY, Park S, Choi DH, Lee K. Perovskite Nanocrystals Protected by Hermetically Sealing for Highly Bright and Stable Deep-Blue Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302906. [PMID: 37271888 PMCID: PMC10427390 DOI: 10.1002/advs.202302906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 06/06/2023]
Abstract
Metal-halide perovskite nanocrystals (NCs) have emerged as suitable light-emitting materials for light-emitting diodes (LEDs) and other practical applications. However, LEDs with perovskite NCs undergo environment-induced and ion-migration-induced structural degradation during operation; therefore, novel NC design concepts, such as hermetic sealing of the perovskite NCs, are required. Thus far, viable synthetic conditions to form a robust and hermetic semiconducting shell on perovskite NCs have been rarely reported for LED applications because of the difficulties in the delicate engineering of encapsulation techniques. Herein, a highly bright and durable deep-blue perovskite LED (PeLED) formed by hermetically sealing perovskite NCs with epitaxial ZnS shells is reported. This shell protects the perovskite NCs from the environment, facilitates charge injection/transport, and effectively suppresses interparticle ion migration during the LED operation, resulting in exceptional brightness (2916 cd m-2 ) at 451 nm and a high external quantum efficiency of 1.32%. Furthermore, even in the unencapsulated state, the LED shows a long operational lifetime (T50 ) of 1192 s (≈20 min) in the air. These results demonstrate that the epitaxial and hermetic encapsulation of perovskite NCs is a powerful strategy for fabricating high-performance deep-blue-emitting PeLEDs.
Collapse
Affiliation(s)
- Yongju Hong
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Chungman Yu
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Hyeondoo Je
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jin Young Park
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Taekyung Kim
- Korea Basic Science Institute (KBSI)Seoul02841Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI)Seoul02841Republic of Korea
| | - Gracita M. Tomboc
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Youngseo Kim
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jung Min Ha
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jinwhan Joo
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Chai Won Kim
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Han Young Woo
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
4
|
Efficient heterostructure of CuS@BiOBr for pollutants removal with visible light assistance. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
5
|
Chen L, Kong Z, Hu H, Tao H, Wang Y, Gao J, Li G. Manipulating Cation Exchange Reactions in Cu 2-xS Nanoparticles via Crystal Structure Transformation. Inorg Chem 2022; 61:9063-9072. [PMID: 35671331 DOI: 10.1021/acs.inorgchem.2c00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper-deficient Cu2-xS nanoparticles (NPs) are extensively exploited as a superior cation exchange (CE) template to yield sophisticated nanostructures. Recently, it has been discovered that their CE reactions can be facilely manipulated by copper vacancy density, morphology, and NP size. However, the structural similarity of usually utilized Cu2-xS somewhat limits the manipulation of the CE reactions through the factor of crystal structure because it can strongly influence the process of the reaction. Herein, we report a methodology of crystal structure transformation to manipulate the CE reactions. Particularly, roxbyite Cu1.8S nanodisks (NDs) were converted into solid wurtzite CdS NDs and Janus-type Cu1.94S/CdS NDs by a "full"/partial CE reaction with Cd2+. Afterward, the roxbyite Cu1.8S were pseudomorphically transformed into covellite CuS NDs. Unlike Cu1.8S, the CuS was scarcely exchanged because of the unique disulfide (S-S) bonds and converted into hollow wurtzite CdS under a more reactive condition. The S-S bonds were gradually split and CuS@CdS core@shell-type NDs were generated. Therefore, our findings in the present study provide not only a versatile technique to manipulate CE reactions in Cu2-xS NPs but also a better comprehension of their reaction dynamics and pathways.
Collapse
Affiliation(s)
- Lihui Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China
| | - Zhenzhen Kong
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China
| | - Haifeng Hu
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China
| | - Yuhua Wang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China
| | - Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China
| | - Guohua Li
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China
| |
Collapse
|
6
|
Chen L, Kong Z, Tao H, Hu H, Gao J, Li G. Crystal structure dependent cation exchange reactions in Cu 2-xS nanoparticles. NANOSCALE 2022; 14:3907-3916. [PMID: 35224594 DOI: 10.1039/d1nr08077f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because of high mobility of Cu+ in crystal lattice, Cu2-xS nanoparticles (NPs) utilized as cation exchange (CE) templates to produce complicated nanomaterials has been extensively investigated. Nevertheless, the structural similarity of commonly used Cu2-xS somewhat limits the exploration of crystal structure dependent CE reactions, since it may dramatically affect the reaction dynamics and pathways. Herein, we select djurleite Cu1.94S and covellite CuS nanodisks (NDs) as starting templates and show that the crystal structure has a strong effect on their CE reactions. In the case of djurleite Cu1.94S NDs, the Cu+ was immediately substituted by Cd2+ and solid wurtzite CdS NDs were produced. At a lower reaction temperature, these NDs were partially substituted, giving rise to the formation of Janus-type Cu1.94S/CdS NDs, and this process is kinetically and thermodynamically favorable. For covellite CuS NDs, they were transformed into hollow CdS NDs under a more aggressive reaction condition due to the unique disulfide covalent bonds. These disulfide bonds distributed along [0 0 1] direction were gradually ruptured/reduced and CuS@CdS core-shell NDs could be obtained. Our findings suggest that not only the CE reaction kinetics and thermodynamics, but also the intermediates and final products are intimately correlated to the crystal structure of the host material.
Collapse
Affiliation(s)
- Lihui Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Zhenzhen Kong
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China.
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China.
| | - Haifeng Hu
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China.
| | - Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China.
| | - Guohua Li
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China.
| |
Collapse
|
7
|
In Situ Partial Sulfidation for Preparing Cu/Cu2−xS Core/Shell Nanorods with Enhanced Photocatalytic Degradation. Catalysts 2022. [DOI: 10.3390/catal12020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Herein, we report an approach to prepare Cu/Cu2−xS core/shell nanorods by in situ sulfidation of copper nanorods. Firstly, copper nanorods with tunable longitudinal surface plasmon resonances were synthesized by a seed-mediated method using Au nanoparticles as seeds. A convenient in situ sulfidation method was then applied to convert the outermost layer of Cu nanorods into Cu2−xS, to increase their stability and surface activity in photocatalytic applications. The thickness of Cu2−xS layer can be adjusted by controlling the amount of S source. The Cu/Cu2−xS core/shell nanorods exhibits two characteristic surface plasmon resonances located in visible and near-infrared regions, respectively. The photocatalytic performances of Cu nanorods and their derivatives were evaluated by measuring the degradation rate of methyl orange dyes. Compared with Cu nanorods, the Cu/Cu2−xS core/shell nanorods demonstrate more than a 13.6-fold enhancement in the degradation rate at 40 min. This work suggests a new direction for constructing derivative nanostructures of copper nanorods and exploring their applications.
Collapse
|
8
|
Yarur Villanueva F, Green PB, Qiu C, Ullah SR, Buenviaje K, Howe JY, Majewski MB, Wilson MWB. Binary Cu 2-xS Templates Direct the Formation of Quaternary Cu 2ZnSnS 4 (Kesterite, Wurtzite) Nanocrystals. ACS NANO 2021; 15:18085-18099. [PMID: 34705409 DOI: 10.1021/acsnano.1c06730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Kesterite Cu2ZnSnS4 (k-CZTS) nanocrystals have received attention for their tunable optoelectronic properties, as well as the earth abundance of their constituent atoms. However, the phase-pure synthesis of these quaternary NCs is challenging due to their polymorphism, as well as the undesired formation of related binary and ternary impurities. A general synthetic route to tackle this complexity is to pass through intermediate template nanocrystals that direct subsequent cation exchange toward the desired quaternary crystalline phase, particularly those that are thermodynamically disfavored or otherwise synthetically challenging. Here, working within this model multinary system, we achieve control over the formation of three binary copper sulfide polymorphs, cubic digenite (Cu1.8S), hexagonal covellite (CuS), and monoclinic djurleite (Cu1.94S). Controlled experiments with Cu0 seeds show that selected binary phases can be favored by the identity and stoichiometry of the sulfur precursor alone under otherwise comparable reaction conditions. We then demonstrate that the nature of the Cu2-xS template dictates the final polymorph of the CZTS nanocrystal products. Through digenite, the cation exchange reaction readily yields the k-CZTS phase due to its highly similar anion sublattice. Covellite nanocrystals template the k-CZTS phase but via major structural rearrangement to digenite that requires elevated temperatures in the absence of a strong reducing agent. In contrast, we show that independently synthesized djurleite nanorods template the formation of the wurtzite polymorph (w-CZTS) but with prominent stacking faults in the final product. Applying this refined understanding to the standard one-pot syntheses of k- and w-CZTS nanocrystals, we identify that these reactions are each effectively templated by binary intermediates formed in situ, harnessing their properties to guide the overall synthesis of phase-pure quaternary materials. Our results provide tools for the careful development of tailored nanocrystal syntheses in complex polymorphic systems.
Collapse
Affiliation(s)
- Francisco Yarur Villanueva
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Philippe B Green
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Chenyue Qiu
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Shahnaj R Ullah
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Kirstin Buenviaje
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Jane Y Howe
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Marek B Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Mark W B Wilson
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
9
|
Wang Y, Coppel Y, Lepetit C, Marty JD, Mingotaud C, Kahn ML. Anisotropic growth of ZnO nanoparticles driven by the structure of amine surfactants: the role of surface dynamics in nanocrystal growth. NANOSCALE ADVANCES 2021; 3:6088-6099. [PMID: 36133935 PMCID: PMC9418458 DOI: 10.1039/d1na00566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 05/15/2023]
Abstract
Herein, we elucidate the key role of amine surfactants in the controlled anisotropic growth of ZnO nanoparticles that is achieved under mild conditions by organometallic hydrolysis. The structuring influence of alkyl substituents on the nitrogen atom of amines is jointly analyzed theoretically by DFT modeling, and experimentally by multinuclear NMR (1H, 13C and 17O) spectroscopy. We demonstrate that in initial steps leading to the growth of colloidal ZnO particles, the nature of molecular species that are involved in the solution strongly depends on the structure of the amine surfactant. By using tertiary, secondary or primary amines, no or weak adducts between the amine and zinc, or stable adducts, or adduct oligomers were identified, respectively. Afterwards, following the course of the reaction, the dynamic behavior of the amines on the grown ZnO nanocrystal surfaces is also strongly correlated with their structure. We identified that in the presence of tertiary, secondary or primary amines, no significant [Zn⋯N] adsorption, or surface adsorption with notable surface mobility, or a very strong adsorption is achieved, respectively. The last case, primary amines, significantly involves the structuring of a hydrogen bonding network. Therefore, such surface dynamic behavior has a predominant role in driving the nanocrystal growth, and orienting the ZnO material final morphology. By forming hydrogen bonds at the nanoparticle surface during the growth process, primary amines specifically lead to the formation of nanorods. Conversely, isotropic nanoparticles and aggregates are obtained when secondary and tertiary amines are used, respectively. These findings shed light on the role of weak surface interactions, herein H-bonding, that rule the growth of nano-objects and are as such crucial to identify, study, and control for achieving progress in nanoscience.
Collapse
Affiliation(s)
- Yinping Wang
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Christine Lepetit
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Myrtil L Kahn
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
10
|
Chen L, Hu H, Chen Y, Gao J, Li G. Metal Cation Valency Dependence in Morphology Evolution of Cu 2-x S Nanodisk Seeds and Their Pseudomorphic Cation Exchanges. Chemistry 2021; 27:7444-7452. [PMID: 33686735 DOI: 10.1002/chem.202100006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/02/2021] [Indexed: 12/18/2022]
Abstract
A crucial parameter in the design of semiconductor nanoparticles (NPs) with controllable optical, magnetic, electronic, and catalytic properties is the morphology. Herein, we demonstrate the potential of additive metal cations with variable valency to direct the morphology evolution of copper-deficient Cu2-x S nanoparticles in the process of seed-mediated growth. In particular, the djurleite Cu1.94 S seed could evolve from disk into tetradecahedron in the presence of tin(IV) cations, whereas they merely formed sharp hexagonal nanodisks with tin(II) cations. In addition to djurleite Cu1.94 S, the tin(IV) cations could be generalized to direct the growth of roxbyite Cu1.8 S and covellite CuS nanodisk seeds into tetradecahedra. We further perform pseudomorphic cation exchanges of Cu1.94 S tetradecahedra with Zn2+ and Cd2+ to produce polyhedral zinc sulfide (ZnS) and cadmium sulfide (CdS) NPs. Moreover, we achieve Cu1.8 S/ZnS and Cu1.94 S/CdS tetradecahedral heterostructures via partial cation exchange, which are otherwise inaccessible by traditional synthetic approaches.
Collapse
Affiliation(s)
- Lihui Chen
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Haifeng Hu
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Yuzhou Chen
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Guohua Li
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
- State Key Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310032, P. R. China
| |
Collapse
|