1
|
Cheng L, Huang Y, Ahmad M, Liu Y, Xu J, Liu Y, Seidi F, Wang D, Lin Z, Xiao H. N-Vacancy Enriched Porous BN Fibers for Enhanced Polysulfides Adsorption and Conversion in High-Performance Lithium-Sulfur Batteries. Chemistry 2024; 30:e202402200. [PMID: 39004611 DOI: 10.1002/chem.202402200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/16/2024]
Abstract
Severe shuttle effect of soluble polysulfides and sluggish redox kinetics have been thought of as the critical issues hindering the extensive applications of lithium-sulfur batteries (LSBs). Herein, one-dimensional boron nitride (1D BN) fibers with abundant pores and sufficient N-vacancy defects were synthesized using a thermal crystallization following a pre-condensation step. The 1D structure of BN facilitates unblocked ions diffusion pathways during charge/discharge cycles. The embedded pores within the polar BN strengthen the immobilization of polysulfides via both physical confinement and chemical interaction. Moreover, the highly exposed active surface area and intentionally created N-vacancy sites substantially promote reaction kinetics by lowering the energy barriers of the rate-limiting steps. After incorporating with conductive carbon networks and elemental S, the as-prepared S/Nv-BN@CBC cathode of LSBs deliver an initial discharge capacity of up to 1347 mAh g-1 at 200 mA g-1, while maintaining a low decay rate of 0.03 % per cycle over 1000 cycles at 1600 mA g-1. This work offers an effective strategy to mitigate the shuttle effect and highlights the significant potential of defect-engineered BN in accelerating the reaction kinetics of LSBs.
Collapse
Affiliation(s)
- Long Cheng
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yue Liu
- FAMSUN New Energy BU, Famsun Group Changzhou Huacai New Energy technology Co., Ltd., Changzhou, 100043, China
| | - Jiaqi Xu
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yihong Liu
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongqing Wang
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zixia Lin
- Testing center, Yangzhou University, Yangzhou, 225009, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5 A3, Canada
| |
Collapse
|
2
|
Gong Y, Li J, Yang K, Li S, Xu M, Zhang G, Shi Y, Cai Q, Li H, Zhao Y. Towards Practical Application of Li-S Battery with High Sulfur Loading and Lean Electrolyte: Will Carbon-Based Hosts Win This Race? NANO-MICRO LETTERS 2023; 15:150. [PMID: 37286885 PMCID: PMC10247666 DOI: 10.1007/s40820-023-01120-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/09/2023]
Abstract
As the need for high-energy-density batteries continues to grow, lithium-sulfur (Li-S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li-S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li-S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li-S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li-S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li-S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
Collapse
Affiliation(s)
- Yi Gong
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Jing Li
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Kai Yang
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Shaoyin Li
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Ming Xu
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Guangpeng Zhang
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Yan Shi
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China.
| | - Yunlong Zhao
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK.
| |
Collapse
|
3
|
Yang J, Qiao W, Qiao J, Gao H, Li Z, Wang P, Cao C, Tang C, Xue Y. Enhanced Performance of Li-S Batteries due to Synergistic Adsorption and Catalysis Activity within a Separation Coating Made of Hybridized BNNSs/N-Doping Porous Carbon Fibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48558-48569. [PMID: 36263683 DOI: 10.1021/acsami.2c11087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lithium-sulfur (Li-S) batteries with high theoretical energy density are considered as the most promising devices for rechargeable energy-storage systems. However, their actual applications are rather limited by the shuttle effect of lithium polysulfides (LiPSs) and the sluggish redox kinetics. Here, the boron nitride nanosheets are homodispersedly embedded into N-doping porous carbon fibers (BNNSs/CHFs) by an electrospinning technique and a subsequent in situ pyrolysis process. The hybridized BNNSs/CHFs can be smartly designed as a multifunctional separation coating onto the commercial PP membrane to enhance the electrochemical performance of Li-S batteries. As a result, the Li-S batteries with extra BNNSs/CHF modification deliver a highly reversible discharge capacity of 830.4 mA h g-1 at a current density of 1 C. Even under 4 C, the discharge specific capacity can reach up to 609.9 mA h g-1 and maintain at 553.9 mA h g-1 after 500 cycles, showing a low capacity decay of 0.01836% per cycle. It is considered that the excellent performance is attributed to the synergistic effect of adsorption and catalysis of the BNNSs/CHF coating used. First, this coating can efficiently reduce the charge transfer resistance and enhance Li-ion diffusion, due to increased catalytic activity from strong electronic interactions between BNNSs and N-doping CHFs. Second, the combination of polar BNNSs and abundant pore structures within the hybridized BNNSs/CHF networks can highly facilitate an adsorption for LiPSs. Here, we believed that this work would provide a promising strategy to increase the Li-S batteries' performance by introducing hybridized BNNSs/N-doping carbon networks, which could efficiently suppress the LiPSs' shuttle effect and improve the electrochemical kinetics of Li-S batteries.
Collapse
Affiliation(s)
- Jingwen Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Wei Qiao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Jiaxiao Qiao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Hejun Gao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Zexia Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Peng Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Chaochao Cao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yanming Xue
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| |
Collapse
|
4
|
Huang Y, Lin L, Zhang C, Liu L, Li Y, Qiao Z, Lin J, Wei Q, Wang L, Xie Q, Peng D. Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106004. [PMID: 35233996 PMCID: PMC9036004 DOI: 10.1002/advs.202106004] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Indexed: 05/19/2023]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and cost-effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li-S batteries is introduced first to give an in-deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li-S batteries are proposed.
Collapse
Affiliation(s)
- Youzhang Huang
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Liang Lin
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Chengkun Zhang
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Lie Liu
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Yikai Li
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zhensong Qiao
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Jie Lin
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Qiulong Wei
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Laisen Wang
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Qingshui Xie
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
- Shenzhen Research Institute of Xiamen UniversityShenzhen518000P. R. China
| | - Dong‐Liang Peng
- State Key Lab for Physical Chemistry of Solid SurfacesFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|