1
|
Matsubayashi T, Yoshioka K, Lei Mon SS, Katsuyama M, Jia C, Yamaguchi T, Hara RI, Nagata T, Nakagawa O, Obika S, Yokota T. Favorable efficacy and reduced acute neurotoxicity by antisense oligonucleotides with 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102161. [PMID: 38978695 PMCID: PMC11229412 DOI: 10.1016/j.omtn.2024.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/28/2024] [Indexed: 07/10/2024]
Abstract
An increasing number of antisense oligonucleotides (ASOs) have been approved for clinical use. However, improvements of both efficacy and safety in the central nervous system (CNS) are crucial for the treatment with CNS diseases. We aimed to overcome the crucial issues by our development of various gapmer ASOs with a novel nucleoside derivative including a 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine (BNAP-AEO). The various gapmer ASOs with BNAP-AEO were evaluated for thermal stability, in vitro and in vivo efficacy, and acute CNS toxicity. Thermal stability analysis of the duplexes with their complementary RNAs showed that ASOs with BNAP-AEO had a higher binding affinity than those without BNAP-AEO. In vitro assays, when transfected into neuroblastoma cell lines, demonstrated that ASOs with BNAP-AEO, had a more efficient gene silencing effect than those without BNAP-AEO. In vivo assays, involving intracerebroventricular injections into mice, revealed ASOs with BNAP-AEO potently suppressed gene expression in the brain. Surprisingly, the acute CNS toxicity in mice, as assessed through open field tests and scoring systems, was significantly lower for ASOs with BNAP-AEO than for those without BNAP-AEO. This study underscores the efficient gene-silencing effect and low acute CNS toxicity of ASOs incorporating BNAP-AEO, indicating the potential for future therapeutic applications.
Collapse
Affiliation(s)
- Taiki Matsubayashi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Su Su Lei Mon
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Maho Katsuyama
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Chunyan Jia
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Rintaro Iwata Hara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| |
Collapse
|
2
|
Das A, Ghosh A, Kundu J, Egli M, Manoharan M, Sinha S. Synthesis and Biophysical Studies of High-Affinity Morpholino Oligomers Containing G-Clamp Analogs. J Org Chem 2023; 88:15168-15175. [PMID: 37843026 DOI: 10.1021/acs.joc.3c01658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Successful syntheses of chlorophosphoramidate morpholino monomers containing tricyclic cytosine analogs phenoxazine, G-clamp, and G8AE-clamp were accomplished. These modified monomers were incorporated into 12-mer oligonucleotides using trityl-chemistry by an automated synthesizer. The resulting phosphorodiamidate morpholino oligomers, containing a single G-clamp, demonstrated notably higher affinity for complementary RNA and DNA compared to the unmodified oligomers under neutral and acidic conditions. The duplexes of RNA and DNA with G-clamp-modified oligomers adopt a B-type helical conformation, as evidenced by CD-spectra and show excellent base recognition properties. Binding affinities were sequence and position dependent.
Collapse
Affiliation(s)
- Arnab Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jayanta Kundu
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Yamaguchi T, Horie N, Aoyama H, Kumagai S, Obika S. Mechanism of the extremely high duplex-forming ability of oligonucleotides modified with N-tert-butylguanidine- or N-tert-butyl-N'- methylguanidine-bridged nucleic acids. Nucleic Acids Res 2023; 51:7749-7761. [PMID: 37462081 PMCID: PMC10450189 DOI: 10.1093/nar/gkad608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 08/26/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are becoming a promising class of drugs for treating various diseases. Over the past few decades, many modified nucleic acids have been developed for application to ASOs, aiming to enhance their duplex-forming ability toward cognate mRNA and improve their stability against enzymatic degradations. Modulating the sugar conformation of nucleic acids by substituting an electron-withdrawing group at the 2'-position or incorporating a 2',4'-bridging structure is a common approach for enhancing duplex-forming ability. Here, we report on incorporating an N-tert-butylguanidinium group at the 2',4'-bridging structure, which greatly enhances duplex-forming ability because of its interactions with the minor groove. Our results indicated that hydrophobic substituents fitting the grooves of duplexes also have great potential to increase duplex-forming ability.
Collapse
Affiliation(s)
- Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naohiro Horie
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Kumagai
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorg Med Chem 2022; 72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
5
|
Kishimoto Y, Fujii A, Nakagawa O, Obika S. Enhanced duplex- and triplex-forming ability and enzymatic resistance of oligodeoxynucleotides modified by a tricyclic thymine derivative. Org Biomol Chem 2021; 19:8063-8074. [PMID: 34494641 DOI: 10.1039/d1ob01462e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and synthesized an artificial nucleic acid, [3-(1,2-dihydro-2-oxobenzo[b][1,8]naphthyridine)]-2'-deoxy-D-ribofuranose (OBN), with a tricyclic structure in a nucleobase as a thymidine analog. Oligodeoxynucleotides (ODNs) containing consecutive OBN displayed improved duplex-forming ability with complementary single-stranded (ss) RNA and triplex-forming ability with double-stranded DNA in comparison with ODNs composed of natural thymidine. OBN-modified ODNs also displayed enhanced enzymatic resistance compared with ODNs with natural thymidine and phosphorothioate modification, respectively, due to the structural steric hindrance of the nucleobase. The fluorescence spectra of OBN-modified ODNs showed sufficient fluorescence intensity with ssDNA and ssRNA, which is an advantageous feature for fluorescence imaging techniques of nucleic acids with longer emission wavelengths than bicyclic thymine (bT).
Collapse
Affiliation(s)
- Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|