1
|
Ahmed A, Hall A, Vasili HB, Kulmaczewski R, Kulak AN, Cespedes O, Pask CM, Brammer L, Roseveare TM, Halcrow MA. Structural Bifurcation in the High→Low-Spin and Low→High-Spin Phase Transitions Explains the Asymmetric Spin-Crossover in [FeL 2][BF 4] 2 (L=2,6-Di{pyrazol-1-yl}isonicotinonitrile). Angew Chem Int Ed Engl 2025; 64:e202416924. [PMID: 39636083 PMCID: PMC11773316 DOI: 10.1002/anie.202416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Polycrystalline [FeL2][BF4]2 (L=2,6-di(pyrazol-1-yl)isonicotinonitrile) exhibits an abrupt hysteretic spin transition near 240 K, with a shoulder on the warming branch whose appearance depends on the sample history. The freshly isolated material is a ca 60 : 40 mixture of triclinic (HS1) and tetragonal (HS2) high-spin polymorphs, which are structurally closely related. Both HS1 and HS2 undergo a high→low-spin transition on cooling at 230±10 K. HS1 transforms to a new triclinic low-spin phase with a doubled unit cell volume (LS3), while HS2 forms a monoclinic low-spin phase (LS4) with similar unit cell dimensions to HS2. Single crystals of LS3 and LS4 both convert to HS1 on rewarming. The low→high-spin transition for LS4 is ca 10 K higher in temperature than for LS3, explaining the asymmetric thermal hysteresis. Powder diffraction, calorimetry and magnetic data show that multiple cycling about the spin-transition leads to slow enrichment of the HS1 and LS3 phases at the expense of HS2 and LS4. That is consistent with the HS2/LS4 fraction of the polycrystalline sample undergoing rare, bifurcated HS2→(LS3+LS4) and LS4→(HS1+HS2) phase transitions. The rate of enrichment of HS1/LS3 differed between these experiments, implying it is sample and/or measurement-dependent. Three other salts of this iron(II) complex and the coordination polymer [Ag(μ-L)]BF4 are also briefly described.
Collapse
Affiliation(s)
- Ahmed Ahmed
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsUKLS2 9JT
- School of Natural SciencesCollege of Science and EngineeringUniversity of GalwayH91 TK 33GalwayIreland
| | - Amy Hall
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsUKLS2 9JT
| | - Hari Babu Vasili
- School of Physics and AstronomyUniversity of LeedsW. H. Bragg BuildingLeedsUKLS2 9JT
| | | | | | - Oscar Cespedes
- School of Physics and AstronomyUniversity of LeedsW. H. Bragg BuildingLeedsUKLS2 9JT
| | | | - Lee Brammer
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldUKS3 7HF
| | | | | |
Collapse
|
2
|
Zhang Y, Torres-Cavanillas R, Yan X, Zeng Y, Jiang M, Clemente-León M, Coronado E, Shi S. Spin crossover iron complexes with spin transition near room temperature based on nitrogen ligands containing aromatic rings: from molecular design to functional devices. Chem Soc Rev 2024; 53:8764-8789. [PMID: 39072682 DOI: 10.1039/d3cs00688c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
During last decades, significant advances have been made in iron-based spin crossover (SCO) complexes, with a particular emphasis on achieving reversible and reproducible thermal hysteresis at room temperature (RT). This pursuit represents a pivotal goal within the field of molecular magnetism, aiming to create molecular devices capable of operating in ambient conditions. Here, we summarize the recent progress of iron complexes with spin transition near RT based on nitrogen ligands containing aromatic rings from molecular design to functional devices. Specifically, we discuss the various factors, including supramolecular interactions, crystal packing, guest molecules and pressure effects, that could influence its cooperativity and the spin transition temperature. Furthermore, the most recent advances in their implementation as mechanical actuators, switching/memories, sensors, and other devices, have been introduced as well. Finally, we give a perspective on current challenges and future directions in SCO community.
Collapse
Affiliation(s)
- Yongjie Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Xinxin Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yixun Zeng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Mengyun Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Shengwei Shi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan, 430056, China
| |
Collapse
|
3
|
Halcrow MA. Mix and match - controlling the functionality of spin-crossover materials through solid solutions and molecular alloys. Dalton Trans 2024; 53:13694-13708. [PMID: 39119634 DOI: 10.1039/d4dt01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The influence of dopant molecules on the structure and functionality of spin-crossover (SCO) materials is surveyed. Two aspects of the topic are well established. Firstly, isomorphous inert metal ion dopants in SCO lattices are a useful probe of the energetics of SCO processes. Secondly, molecular alloys of iron(II)/triazole coordination polymers containing mixtures of ligands were used to tune their spin-transitions towards room temperature. More recent examples of these and related materials are discussed that reveal new insights into these questions. Complexes which are not isomorphous can also be co-crystallised, either as solid solutions of the precursor molecules or as a random distribution of homo- and hetero-leptic centres in a molecular alloy. This could be a powerful method to manipulate SCO functionality. Published molecular alloys show different SCO behaviours, which may or may not include allosteric switching of their chemically distinct metal sites.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Halcrow MA, Vasili HB, Pask CM, Kulak AN, Cespedes O. Activating a high-spin iron(II) complex to thermal spin-crossover with an inert non-isomorphous molecular dopant. Dalton Trans 2024; 53:6983-6992. [PMID: 38563124 DOI: 10.1039/d4dt00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
[Fe(bpp)2][ClO4]2 (bpp = 2,6-bis{pyrazol-1-yl}pyridine; monoclinic, C2/c) is high-spin between 5-300 K, and crystallises with a highly distorted molecular geometry that lies along the octahedral-trigonal prismatic distortion pathway. In contrast, [Ni(bpp)2][ClO4]2 (monoclinic, P21) adopts a more regular, near-octahedral coordination geometry. Gas phase DFT minimisations (ω-B97X-D/6-311G**) of [M(bpp)2]2+ complexes show the energy penalty associated with that coordination geometry distortion runs as M2+ = Fe2+ (HS) ≈ Mn2+ (HS) < Zn2+ ≈ Co2+ (HS) ≲ Cu2+ ≪ Ni2+ ≪ Ru2+ (LS; HS = high-spin, LS = low-spin). Slowly crystallised solid solutions [FexNi1-x(bpp)2][ClO4]2 with x = 0.53 (1a) and 0.74 (2a) adopt the P21 lattice, while x = 0.87 (3a) and 0.94 (4a) are mixed-phase materials with the high-spin C2/c phase as the major component. These materials exhibit thermal spin-transitions at T½ = 250 ± 1 K which occurs gradually in 1a, and abruptly and with narrow thermal hysteresis in 2a-4a. The transition proceeds to 100% completeness in 1a and 2a; that is, the 26% Ni doping in 2a is enough to convert high-spin [Fe(bpp)2][ClO4]2 into a cooperative, fully SCO-active material. These results were confirmed crystallographically for 1a and 2a, which revealed similarities and differences between these materials and the previously published [FexNi1-x(bpp)2][BF4]2 series. Rapidly precipitated powders with the same compositions (1b-4b) mostly resemble 1a-4a, except that 2b is a mixed-phase material; 2b-4b also contain a fraction of amorphous solid in addition to the two crystal phases. The largest iron fraction that can be accommodated by the P21 phase in this system is 0.7 ± 0.1.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Hari Babu Vasili
- School of Physics and Astronomy, University of Leeds, W. H. Bragg Building, Leeds, LS2 9JT, UK
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Alexander N Kulak
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, W. H. Bragg Building, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Capel Berdiell I, Michaels E, Munro OQ, Halcrow MA. A Survey of the Angular Distortion Landscape in the Coordination Geometries of High-Spin Iron(II) 2,6-Bis(pyrazolyl)pyridine Complexes. Inorg Chem 2024; 63:2732-2744. [PMID: 38258555 PMCID: PMC10848207 DOI: 10.1021/acs.inorgchem.3c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Reaction of 2,4,6-trifluoropyridine with sodium 3,4-dimethoxybenzenethiolate and 2 equiv of sodium pyrazolate in tetrahydrofuran at room temperature affords 4-(3,4-dimethoxyphenylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L), in 30% yield. The iron(II) complexes [FeL2][BF4]2 (1a) and [FeL2][ClO4]2 (1b) are high-spin with a highly distorted six-coordinate geometry. This structural deviation from ideal D2d symmetry is common in high-spin [Fe(bpp)2]2+ (bpp = di{pyrazol-1-yl}pyridine) derivatives, which are important in spin-crossover materials research. The magnitude of the distortion in 1a and 1b is the largest yet discovered for a mononuclear complex. Gas-phase DFT calculations at the ω-B97X-D/6-311G** level of theory identified four minimum or local minimum structural pathways across the distortion landscape, all of which are observed experimentally in different complexes. Small distortions from D2d symmetry are energetically favorable in complexes with electron-donating ligand substituents, including sulfanyl groups, which also have smaller energy penalties associated with the lowest energy distortion pathway. Natural population analysis showed that these differences reflect greater changes to the Fe-N{pyridyl} σ-bonding as the distortion proceeds, in the presence of more electron-rich pyridyl donors. The results imply that [Fe(bpp)2]2+ derivatives with electron-donating pyridyl substituents are more likely to undergo cooperative spin transitions in the solid state. The high-spin salt [Fe(bpp)2][CF3SO3]2, which also has a strong angular distortion, is also briefly described and included in the analysis.
Collapse
Affiliation(s)
| | - Evridiki Michaels
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Orde Q. Munro
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
6
|
Breijyeh Z, Karaman R. Design and Synthesis of Novel Antimicrobial Agents. Antibiotics (Basel) 2023; 12:628. [PMID: 36978495 PMCID: PMC10045396 DOI: 10.3390/antibiotics12030628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The necessity for the discovery of innovative antimicrobials to treat life-threatening diseases has increased as multidrug-resistant bacteria has spread. Due to antibiotics' availability over the counter in many nations, antibiotic resistance is linked to overuse, abuse, and misuse of these drugs. The World Health Organization (WHO) recognized 12 families of bacteria that present the greatest harm to human health, where options of antibiotic therapy are extremely limited. Therefore, this paper reviews possible new ways for the development of novel classes of antibiotics for which there is no pre-existing resistance in human bacterial pathogens. By utilizing research and technology such as nanotechnology and computational methods (such as in silico and Fragment-based drug design (FBDD)), there has been an improvement in antimicrobial actions and selectivity with target sites. Moreover, there are antibiotic alternatives, such as antimicrobial peptides, essential oils, anti-Quorum sensing agents, darobactins, vitamin B6, bacteriophages, odilorhabdins, 18β-glycyrrhetinic acid, and cannabinoids. Additionally, drug repurposing (such as with ticagrelor, mitomycin C, auranofin, pentamidine, and zidovudine) and synthesis of novel antibacterial agents (including lactones, piperidinol, sugar-based bactericides, isoxazole, carbazole, pyrimidine, and pyrazole derivatives) represent novel approaches to treating infectious diseases. Nonetheless, prodrugs (e.g., siderophores) have recently shown to be an excellent platform to design a new generation of antimicrobial agents with better efficacy against multidrug-resistant bacteria. Ultimately, to combat resistant bacteria and to stop the spread of resistant illnesses, regulations and public education regarding the use of antibiotics in hospitals and the agricultural sector should be combined with research and technological advancements.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
7
|
Kulmaczewski R, Armstrong IT, Catchpole P, Ratcliffe ESJ, Vasili HB, Warriner SL, Cespedes O, Halcrow MA. Di-Iron(II) [2+2] Helicates of Bis-(Dipyrazolylpyridine) Ligands: The Influence of the Ligand Linker Group on Spin State Properties. Chemistry 2023; 29:e202202578. [PMID: 36382594 PMCID: PMC10108139 DOI: 10.1002/chem.202202578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Four bis[2-{pyrazol-1-yl}-6-{pyrazol-3-yl}pyridine] ligands have been synthesized, with butane-1,4-diyl (L1 ), pyrid-2,6-diyl (L2 ), benzene-1,2-dimethylenyl (L3 ) and propane-1,3-diyl (L4 ) linkers between the tridentate metal-binding domains. L1 and L2 form [Fe2 (μ-L)2 ]X4 (X- =BF4 - or ClO4 - ) helicate complexes when treated with the appropriate iron(II) precursor. Solvate crystals of [Fe2 (μ-L1 )2 ][BF4 ]4 exhibit three different helicate conformations, which differ in the torsions of their butanediyl linker groups. The solvates exhibit gradual thermal spin-crossover, with examples of stepwise switching and partial spin-crossover to a low-temperature mixed-spin form. Salts of [Fe2 (μ-L2 )2 ]4+ are high-spin, which reflects their highly twisted iron coordination geometry. The composition and dynamics of assembly structures formed by iron(II) with L1 -L3 vary with the ligand linker group, by mass spectrometry and 1 H NMR spectroscopy. Gas-phase DFT calculations imply the butanediyl linker conformation in [Fe2 (μ-L1 )2 ]4+ influences its spin state properties, but show anomalies attributed to intramolecular electrostatic repulsion between the iron atoms.
Collapse
Affiliation(s)
| | | | - Pip Catchpole
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | | | - Hari Babu Vasili
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | | - Oscar Cespedes
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | |
Collapse
|
8
|
Zhao SZ, Yu ZM, Qin CY, Xu PY, Wang YT, Li YH, Wang S. Gradual two-step and room temperature spin crossover in Mn(III) complexes with nitro-substituted ligand. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Draoui Y, Radi S, Tanan A, Oulmidi A, Miras HN, Benabbes R, Ouahhoudo S, Mamri S, Rotaru A, Garcia Y. Novel family of bis-pyrazole coordination complexes as potent antibacterial and antifungal agents. RSC Adv 2022; 12:17755-17764. [PMID: 35765319 PMCID: PMC9198996 DOI: 10.1039/d2ra03414j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022] Open
Abstract
A new pyrazole ligand, N,N-bis(2(1′,5,5′-trimethyl-1H,1′H-[3,3′-bipyrazol]-1-yl)ethyl)propan-1-amine (L) was synthesized and characterized by 1H-NMR, 13C-NMR, FT-IR and HRMS. The coordination ability of the ligand has been employed for the construction of a new family of coordination complexes, namely: [Cu2LCl4] (1), [ML(CH3OH)(H2O)](ClO4)2 (MII = Ni (2), Co (3)) and [FeL(NCS)2] (4). The series of complexes were characterized using single-crystal X-ray diffraction, HRMS, FT-IR and UV-visible spectroscopy. Moreover, the iron(ii) analogue was investigated by 57Fe Mössbauer spectroscopy and SQUID magnetometry. Single-crystal X-ray structures of the prepared complexes are debated within the framework of the cooperative effect of the hydrogen bonding network and counter anions on the supramolecular formations observed. Furthermore, within the context of biological activity surveys, these compounds were reviewed against different types of bacteria to validate their efficiency, including both Gram-positive as well as Gram-negative bacteria. Enhanced behaviour towards Fusarium oxysporum f. sp. albedinis fungi, were detected for 1 and 4. A new pyrazole ligand L and four coordination complexes were synthesized and characterized by different spectroscopic methods. These were found to be promising antibacterial and antifungal agents.![]()
Collapse
Affiliation(s)
- Youssef Draoui
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Amine Tanan
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Afaf Oulmidi
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco .,Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain Belgium +32-10472330
| | - Haralampos N Miras
- School of Chemistry, Joseph Black Building, University of Glasgow Glasgow G12 8QQ UK
| | - Redouane Benabbes
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Sabir Ouahhoudo
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Samira Mamri
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Aurelian Rotaru
- Department of Electrical Engineering and Computer Science & Research Center MANSiD, "Stefan Cel Mare" University University Street, No. 13 Suceava 720229 Romania
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain Belgium +32-10472330
| |
Collapse
|
10
|
Kulmaczewski R, Kershaw Cook LJ, Pask CM, Cespedes O, Halcrow MA. Iron(II) Complexes of 4-(Alkyldisulfanyl)-2,6-di(pyrazolyl)pyridine Derivatives. Correlation of Spin-Crossover Cooperativity with Molecular Structure Following Single-Crystal-to-Single-Crystal Desolvation. CRYSTAL GROWTH & DESIGN 2022; 22:1960-1971. [PMID: 35431660 PMCID: PMC9007408 DOI: 10.1021/acs.cgd.2c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The complex salts [Fe(L 1)2]X2 (1X 2 ; L 1 = 4-(isopropyldisulfanyl)-2,6-bis(pyrazolyl)pyridine; X- = BF4 -, ClO4 -) form solvated crystals from common organic solvents. Crystals of 1X 2 ·Me2CO show abrupt spin transitions near 160 K, with up to 22 K thermal hysteresis. 1X 2 ·Me2CO cocrystallizes with other, less cooperative acetone solvates, which all transform into the same solvent-free materials 1X 2 ·sf upon exposure to air, or mild heating. Conversion of 1X 2 ·Me2CO to 1X 2 ·sf proceeds in a single-crystal to single-crystal fashion. 1X 2 ·sf are not isomorphous with the acetone solvates, and exhibit abrupt spin transitions at low temperature with hysteresis loops of 30-38 K (X- = BF4 -) and 10-20 K (X- = ClO4 -), depending on the measurement method. Interestingly, the desolvation has an opposite effect on the SCO temperature and hysteresis in the two salts. The hysteretic spin transitions in 1X 2 ·Me2CO and 1X 2 ·sf do not involve a crystallographic phase change but are accompanied by a significant rearrangement of the metal coordination sphere. Other solvates 1X 2 ·MeNO2, 1X 2 ·MeCN, and 1X 2 ·H2O are mostly isomorphous with each other and show more gradual spin-crossover equilibria near room temperature. All three of these lattice types have similar unit cell dimensions and contain cations associated into chains through pairwise, intermolecular S···π interactions. Polycrystalline [Fe(L 2)2][BF4]2·MeNO2 (2[BF 4 ] 2 ·MeNO2; L 2 = 4-(methyldisulfanyl)-2,6-bis(pyrazolyl)pyridine) shows an abrupt spin transition just above room temperature, with an unsymmetrical and structured hysteresis loop, whose main features are reversible upon repeated thermal scanning.
Collapse
Affiliation(s)
- Rafal Kulmaczewski
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | | | - Christopher M. Pask
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Oscar Cespedes
- School
of Physics and Astronomy, University of
Leeds, E. C. Stoner
Building, Leeds LS2 9JT, U.K.
| | - Malcolm A. Halcrow
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
11
|
KANETOMO T, Ni Z, Enomoto M. Hydrogen-Bonded Cobalt(II)-Organic Framework: Normal and Reverse Spin-Crossover Behaviours. Dalton Trans 2022; 51:5034-5040. [DOI: 10.1039/d2dt00453d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hydrogen-bonded metal-organic framework (H-MOF) [Co(HL)2](DMF)1.2(H2O)2.4 (1·solv), in which L = 2,2’:6’,2”-terpyridine-5,5’-diyl biscarboxylate, was prepared. An intermolecular single H-bond between carboxy and carboxylate sites was present in this compound....
Collapse
|
12
|
Capel Berdiell I, Davies DJ, Woodworth J, Kulmaczewski R, Cespedes O, Halcrow MA. Structures and Spin States of Iron(II) Complexes of Isomeric 2,6-Di(1,2,3-triazolyl)pyridine Ligands. Inorg Chem 2021; 60:14988-15000. [PMID: 34547208 DOI: 10.1021/acs.inorgchem.1c02404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron(II) complex salts of 2,6-di(1,2,3-triazol-1-yl)pyridine (L1) are unexpectedly unstable in undried solvent. This is explained by the isolation of [Fe(L1)4(H2O)2][ClO4]2 and [Fe(NCS)2(L1)2(H2O)2]·L1, containing L1 bound as a monodentate ligand rather than in the expected tridentate fashion. These complexes associate into 44 grid structures through O-H···N hydrogen bonding; a solvate of a related 44 coordination framework, catena-[Cu(μ-L1)2(H2O)2][BF4]2, is also presented. The isomeric ligands 2,6-di(1,2,3-triazol-2-yl)pyridine (L2) and 2,6-di(1H-1,2,3-triazol-4-yl)pyridine (L3) bind to iron(II) in a more typical tridentate fashion. Solvates of [Fe(L3)2][ClO4]2 are low-spin and diamagnetic in the solid state and in solution, while [Fe(L2)2][ClO4]2 and [Co(L3)2][BF4]2 are fully high-spin. Treatment of L3 with methyl iodide affords 2,6-di(2-methyl-1,2,3-triazol-4-yl)pyridine (L4) and 2-(1-methyl-1,2,3-triazol-4-yl)-6-(2-methyl-1,2,3-triazol-4-yl)pyridine (L5). While salts of [Fe(L5)2]2+ are low-spin in the solid state, [Fe(L4)2][ClO4]2·H2O is high-spin, and [Fe(L4)2][ClO4]2·3MeNO2 exhibits a hysteretic spin transition to 50% completeness at T1/2 = 128 K (ΔT1/2 = 6 K). This transition proceeds via a symmetry-breaking phase transition to an unusual low-temperature phase containing three unique cation sites with high-spin, low-spin, and 1:1 mixed-spin populations. The unusual distribution of the spin states in the low-temperature phase reflects "spin-state frustration" of the mixed-spin cation site by an equal number of high-spin and low-spin nearest neighbors. Gas-phase density functional theory calculations reproduce the spin-state preferences of these and some related complexes. These highlight the interplay between the σ-basicity and π-acidity of the heterocyclic donors in this ligand type, which have opposing influences on the molecular ligand field. The Brønsted basicities of L1-L3 are very sensitive to the linkage isomerism of their triazolyl donors, which explains why their iron complex spin states show more variation than the better-known iron(II)/2,6-dipyrazolylpyridine system.
Collapse
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Daniel J Davies
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Jack Woodworth
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, E. C. Stoner Building, Leeds LS2 9JT, U.K
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|
13
|
Kulmaczewski R, Howard MJ, Halcrow MA. Influence of ligand substituent conformation on the spin state of an iron(II)/di(pyrazol-1-yl)pyridine complex. Dalton Trans 2021; 50:3464-3467. [PMID: 33660725 DOI: 10.1039/d1dt00590a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The temperature of the solution-phase spin-crossover equilibrium in iron(ii) complexes of 4-alkylsulfanyl-2,6-di{pyrazol-1-yl}pyridine (bppSR) complexes depends strongly on the alkylsulfanyl substituent. DFT calculations imply this reflects the conformation of the alkylsulfanyl groups, which lie perpendicular to the heterocyclic ligand donors in [Fe(bppStBu)2]2+ but are oriented co-planar with the ligand core for smaller SR substituents.
Collapse
Affiliation(s)
- Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| | - Mark J Howard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| |
Collapse
|
14
|
Wang RG, Meng YS, Gao FF, Gao WQ, Liu CH, Li A, Liu T, Zhu YY. Ligand symmetry significantly affects spin crossover behaviour in isomeric [Fe(pybox) 2] 2+ complexes. Dalton Trans 2021; 50:3369-3378. [PMID: 33595584 DOI: 10.1039/d0dt03978k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of the correlation between the spin-state behaviour and the structural features in transition-metal complexes is of pronounced importance to the design of spin crossover compounds with high performance. However, the study of the influence of ligand symmetry on the spin crossover properties is still limited due to the shortage of suitable structural systems. Herein we report the magneto-structural correlations of three mononuclear Fe(ii) isomers with respect to their ligand symmetry. In this work, two phenyl-substituted meso and optically pure pybox ligands were employed to construct meso (1), optically pure (2), and racemic (3) ligand types of [Fe(pybox)2]2+ complexes. Their magnetic susceptibilities were measured via temperature-dependent paramagnetic 1H NMR spectroscopy. We fitted the midpoint temperatures of the transition (T1/2) of 260 K for 1(ClO4), 247 K for 2(ClO4), and 281 K for 3(ClO4). The influence of structural symmetry on spin crossover was rationalized through density functional theory calculations. The optimized structures of [Fe(pybox)2]2+ complex cations show that the geometric distortion of the central FeN6 coordination sphere is mainly caused by the steric congestions between adjacent phenyl substituents. In these compounds, there is a distinct correlation that more steric congestions produce larger coordination distortion and favor the electron configuration in the high-spin state, which reflects in the increase of T1/2. Additionally, the influence of the counter anion and lattice solvent on the meso series compounds was inspected. It is revealed that multiple factors dominate the spin-state behaviour in the solid state. This work provides deep insight into the effect of ligand symmetry on the spin transition behaviour in spin crossover compounds. It demonstrates that molecular symmetry should be considered in the design of spin crossover compounds.
Collapse
Affiliation(s)
- Run-Guo Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China.
| | | | | | | | | | | | | | | |
Collapse
|