1
|
Chen WK, Zhao X, Liu XY, Xie XY, Zeng Y, Cui G. Photoinduced Nonadiabatic Dynamics of a Single-Walled Carbon Nanotube-Porphyrin Complex. J Phys Chem A 2024; 128:8803-8815. [PMID: 39344670 DOI: 10.1021/acs.jpca.4c04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) have gained a lot of attention in the past few decades due to their promising optoelectronic properties. In addition, SWCNTs can form complexes that have good chemical stability and transport properties with other optical functional materials through noncovalent interactions. Elucidating the detailed mechanism of these complexes is of great significance for improving their optoelectronic properties. Nevertheless, simulating the photoinduced dynamics of these complexes accurately is rather challenging since they usually contain hundreds of atoms. To save computational efforts, most of the previous works have ignored the excitonic effects by employing nonadiabatic carrier (electron and hole) dynamics simulations. To properly consider the influence of excitonic effects on the photoinduced ultrafast processes of the SWCNT-tetraphenyl porphyrin (H2TPP) complex and to further improve the computational efficiency, we developed the nonadiabatic molecular dynamics (NAMD) method based on the extended tight binding-based simplified Tamm-Dancoff approximation (sTDA-xTB), which is applied to study the ultrafast photoinduced dynamics of the noncovalent SWCNT-porphyrin complex. In combination with statically electronic structure calculations, the present work successfully reveals the detailed microscopic mechanism of the ultrafast excitation energy transfer process of the complex. Upon local excitation on the H2TPP molecule, an ultrafast energy transfer process occurs from H2TPP (SWCNT-H2TPP*) to SWCNT (SWCNT*-H2TPP) within 10 fs. Then, two slower processes corresponding to the energy transfer from H2TPP to SWCNT and hole transfer from H2TPP to SWCNT take place in the 1 ps time scale. The sTDA-xTB-based electronic structure calculation and NAMD simulation results not only match the previous experimental observations from static and transient spectra but also provide more insights into the detailed information on the complex's photoinduced dynamics. Therefore, the sTDA-xTB-based NAMD method is a powerful theoretical tool for studying the ultrafast photoinduced dynamics in large extended systems with a large number of electronically excited states, which could be helpful for the subsequent design of SWCNT-based functional materials.
Collapse
Affiliation(s)
- Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xi Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiao-Ying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Xiang L, Matler A, Tan L, Ye Q. Reactivity study of Lewis superacidic carborane-based analogue of 9-bromo-9-borafluorene towards Lewis bases. Dalton Trans 2024; 53:11655-11658. [PMID: 38946218 DOI: 10.1039/d4dt01615g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this contribution, we present the reactions of the o-carborane-based analogue of 9-bromo-9-borafluorene, a Lewis superacid, with diverse Lewis bases. A range of acid-base adducts, along with an intramolecular C-H activation product, were generated. All new compounds have been fully characterized.
Collapse
Affiliation(s)
- Libo Xiang
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry& Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Matler
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry& Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Leibo Tan
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry& Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Qing Ye
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry& Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
4
|
Liu S, Liu SS, Tang XM, Liu XY, Yang JJ, Cui G, Li L. Solvent effects on the photoinduced charge separation dynamics of directly linked zinc phthalocyanine-perylenediimide dyads: a nonadiabatic dynamics simulation with an optimally tuned screened range-separated hybrid functional. Phys Chem Chem Phys 2023; 25:28452-28464. [PMID: 37846460 DOI: 10.1039/d3cp03517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Herein, we have employed a combination of the optimally tuned screened range-separated hybrid (OT-SRSH) functional, the polarizable continuum model (PCM), and nonadiabatic dynamics (NAMD) simulations to investigate the photoinduced dynamics of directly linked donor-acceptor dyads formed using zinc phthalocyanine (ZnPc) and perylenediimide (PDI), in which ZnPc is the donor while PDI is the acceptor. Our simulations aim to analyze the behavior of these dyads upon local excitation of the ZnPc moiety in the gas phase and in benzonitrile. Our findings indicate that the presence of a solvent can significantly influence the excited state dynamics of ZnPc-PDI dyads. Specifically, the polar solvent benzonitrile effectively lowers the vertical excitation energies of the charge transfer (CT) state from ZnPc to PDI. As a result, the energetic order of the locally excited (LE) states of ZnPc and the CT states is reversed compared to the gas phase. Consequently, the photoinduced electron transfer (PET) dynamics from ZnPc to PDI, which is absent in the gas phase, takes place in benzonitrile with a time constant of 10.4 ps. Importantly, our present work not only qualitatively agrees with experimental results but also provides in-depth insights into the underlying mechanisms responsible for the photoinduced dynamics of ZnPc-PDI. Moreover, this study emphasizes the importance of appropriately considering solvent effects in NAMD simulation of organic donor-acceptor systems, taking into account the distinct excited state dynamics observed in the gas phase and benzonitrile. Furthermore, the combination of the OT-SRSH functional, the PCM solvent model, and nonadiabatic dynamics simulations shows promise as a strategy for investigating the complex excited state dynamics of organic donor-acceptor systems in solvents. These findings will be valuable for the future design of novel organic donor-acceptor structures with improved performance.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Sha-Sha Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiao-Mei Tang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Jia-Jia Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
5
|
Xie RF, Zhang JB, Wu Y, Li L, Liu XY, Cui G. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. J Chem Phys 2023; 158:054108. [PMID: 36754819 DOI: 10.1063/5.0134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herein, we employed a developed linear response time dependent density functional theory-based nonadiabatic dynamics simulation method that explicitly takes into account the excitonic effects to investigate photoinduced excitation energy transfer dynamics of a double-walled carbon nanotube (CNT) model with different excitation energies. The E11 excitation of the outer CNT will generate a local excitation (LE) |out*〉 exciton due to its low energy, which does not induce any charge separation. In contrast, the E11 excitation of the inner CNT can generate four kinds of excitons with the LE exciton |in*〉 dominates. In the 500-fs dynamics simulation, the LE exciton |in*〉 and charge transfer (CT) excitons |out-in+〉 and |out+in-〉 are all gradually converted to the |out*〉 exciton, corresponding to a photoinduced excitation energy transfer, which is consistent with experimental studies. Finally, when the excitation energy is close to the E22 state of the outer CNT (∼1.05 eV), a mixed population of different excitons, with the |out*〉 exciton dominated, is generated. Then, photoinduced energy transfer from the outer to inner CNTs occurs in the first 50 fs, which is followed by an inner to outer excitation energy transfer that is completed in 400 fs. The present work not only sheds important light on the mechanistic details of wavelength-dependent excitation energy transfer of a double-walled CNT model but also demonstrates the roles and importance of CT excitons in photoinduced excitation energy transfer. It also emphasized that explicitly including the excitonic effects in electronic structure calculations and nonadiabatic dynamics simulations is significant for correct understanding/rational design of optoelectronic properties of periodically extended systems.
Collapse
Affiliation(s)
- Rui-Fang Xie
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing-Bin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Xie BB, Jia PK, Wang KX, Chen WK, Liu XY, Cui G. Generalized Ab Initio Nonadiabatic Dynamics Simulation Methods from Molecular to Extended Systems. J Phys Chem A 2022; 126:1789-1804. [PMID: 35266391 DOI: 10.1021/acs.jpca.1c10195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonadiabatic dynamics simulation has become a powerful tool to describe nonadiabatic effects involved in photophysical processes and photochemical reactions. In the past decade, our group has developed generalized trajectory-based ab initio surface-hopping (GTSH) dynamics simulation methods, which can be used to describe a series of nonadiabatic processes, such as internal conversion, intersystem crossing, excitation energy transfer and charge transfer of molecular systems, and photoinduced nonadiabatic carrier dynamics of extended systems with and without spin-orbit couplings. In this contribution, we will first give a brief introduction to our recently developed methods and related numerical implementations at different computational levels. Later, we will present some of our latest applications in realistic systems, which cover organic molecules, biological proteins, organometallic compounds, periodic organic and inorganic materials, etc. Final discussion is given to challenges and outlooks of ab initio nonadiabatic dynamics simulations.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Pei-Ke Jia
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ke-Xin Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, Sichuan, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
7
|
Borges-Martínez M, Montenegro-Pohlhammer N, Zhang X, Galvez-Aranda DE, Ponce V, Seminario JM, Cárdenas-Jirón G. Fullerene binding effects in Al(III)/Zn(II) Porphyrin/Phthalocyanine photophysical properties and charge transport. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120740. [PMID: 34968837 DOI: 10.1016/j.saa.2021.120740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
We evaluate the fullerene C60 binding effect; through the metal (Al) and through the ligand (Pc,TPP), on the photophysical and charge transport properties of M-porphyrin(TPP)/phthalocyanine(Pc) (M = Al(III), Zn(II)). We perform density functional theory (DFT) and time-dependent DFT calculations for the macrocycle-C60 dyads, showing that all systems studied are thermodynamically favorable. The C60 binding effect on the absorption spectrum is a red-shift of the Q and Soret (B) bands of TPPs and Pcs. The Pc-dyads show longer λ for Q bands (673 nm) than those with TPP (568 nm). AlTPP-C60 and ZnTPP-C60 show a more favorable electron injection to TiO2 than the analogs Pcs, and the regeneration of the dye is preferred in AlTPP-C60 and AlPc-C60. Zero-bias conductance is computed (10-4-10-7 G0) for the dyads using molecular junctions with Au(111)-based electrodes. When a bias voltage of around 0.6 V up to 1 V is applied, an increase in current is obtained for AlTPP-C60 (10-7 A), ZnTPP-C60 (10-7 A), and AlPc-C60 (10-8 A). Although there is not a unique trend in the behavior of the dyads, Pcs have better photophysical properties than TPPs and the latter are better in the charge transport. We conclude that AlTPP(ZnTPP)-C60 dyads are an excellent alternative for designing new materials for dye-sensitized solar cells or optoelectronic devices.
Collapse
Affiliation(s)
- Merlys Borges-Martínez
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile.
| | - Nicolás Montenegro-Pohlhammer
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile.
| | - Xiance Zhang
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A
| | - Diego E Galvez-Aranda
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A
| | - Victor Ponce
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A
| | - Jorge M Seminario
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A.
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile.
| |
Collapse
|
8
|
Platzer B, Berionni Berna B, Bischetti M, Cicero DO, Paolesse R, Nardis S, Torres T, Guldi DM. Exploring the Association of Electron‐Donating Corroles with Phthalocyanines as Electron Acceptors. Chemistry 2022; 28:e202103891. [PMID: 35084748 PMCID: PMC9306480 DOI: 10.1002/chem.202103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Electron‐donating corroles (Cor) were integrated with electron‐accepting phthalocyanines (Pc) to afford two different non‐covalent Cor ⋅ Pc systems. At the forefront was the coordination between a 10‐meso‐pyridine Cor and a ZnPc. The complexation was corroborated in a combination of NMR, absorption, and fluorescence assays, and revealed association with binding constants as high as 106
m−1. Steady‐state and time‐resolved spectroscopies evidenced that regardless of exciting Cor or Pc, the charge‐separated state evolved efficiently in both cases, followed by a slow charge‐recombination to reinstate the ground state. The introduction of non‐covalent linkages between Cor and Pc induces sizeable differences in the context of light harvesting and transfer of charges when compared with covalently linked Cor‐Pc conjugates.
Collapse
Affiliation(s)
- Benedikt Platzer
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Beatrice Berionni Berna
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
- Departamento de Química Orgánica Universidad Autónoma de Madrid, Campus de Cantoblanco C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Martina Bischetti
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Daniel O. Cicero
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Sara Nardis
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Tomás Torres
- Departamento de Química Orgánica Universidad Autónoma de Madrid, Campus de Cantoblanco C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, Campus de Cantoblanco 28049 Madrid Spain
- IMDEA-Nanociencia C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
9
|
Chen WK, Cui G, Liu XY. Solvent effects on excited-state relaxation dynamics of paddle-wheel BODIPY-Hexaoxatriphenylene conjugates: Insights from non-adiabatic dynamics simulations. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Understanding the excited state dynamics of donor-acceptor (D-A) complexes is of fundamental importance both experimentally and theoretically. Herein, we have first explored the photoinduced dynamics of a recently synthesized paddle-wheel BODIPY-hexaoxatriphenylene (BODIPY is the abbreviation for BF2-chelated dipyrromethenes) conjugates D-A complexes with the combination of both electronic structure calculations and non-adiabatic dynamics simulations. On the basis of computational results, we concluded that the BODIPY-hexaoxatriphenylene (BH) conjugates will be promoted to the local excited (LE) states of the BODIPY fragments upon excitation, which is followed by the ultrafast exciton transfer from LE state to charge transfer (CT). Instead of the photoinduced electron transfer process proposed in previous experimental work, such a exciton transfer process is accompanied with the photoinduced hole transfer from BODIPY to hexaoxatriphenylene. Additionally, solvent effects are found to play an important role in the photoinduced dynamics. Specifically, the hole transfer dynamics is accelerated by the acetonitrile solvent, which can be ascribed to significant influences of the solvents on the charge transfer states, i.e. the energy gaps between LE and CT excitons are reduced greatly and the non-adiabatic couplings are increased in the meantime. Our present work not only provides valuable insights into the underlying photoinduced mechanism of BH, but also can be helpful for the future design of novel donor-acceptor conjugates with better optoelectronic performance.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
10
|
Mao D, Chen XR, Li DH, Liu XY, Cui G, Li L. Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: a nonadiabatic dynamics simulation with optimally tuned range-separated functional. Phys Chem Chem Phys 2022; 24:27173-27183. [DOI: 10.1039/d2cp03822f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The combination of nonadiabatic dynamics simulation and optimally tuned range-separated functional might be a powerful tool for elucidating the ultrafast charge transfer in nonfullerene all-small-molecule organic solar cells.
Collapse
Affiliation(s)
- Dan Mao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xin-Rui Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Dong-Heng Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| |
Collapse
|
11
|
Zhang S, Zeng YP, Wan XJ, Xu DH, Liu XY, Cui G, Li L. Ultrafast Exciton Delocalization and Localization Dynamics of a Perylene Bisimide Quadruple π-Stack: A Nonadiabatic Dynamics Simulation. Phys Chem Chem Phys 2022; 24:7293-7302. [DOI: 10.1039/d2cp00018k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the photogenerated exciton dynamics of πstacked molecular aggregates is of great importance for both fundamental studies and industrial applications. Among various πstacked molecular aggregates, perylene tetracarboxylic acid bisimides (PBI)...
Collapse
|
12
|
Chen WK, Sun XW, Fang Q, Liu XY, Cui GL. GW/BSE nonadiabatic dynamics simulations on excited-state relaxation processes of zinc phthalocyanine-fullerene dyads: Roles of bridging chemical bonds. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2109162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Wen-kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-wei Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Gang-long Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|