1
|
Cifuentes C, Bravo N, Restrepo D, Macías M, Portilla J. Isomerization of pirazolopyrimidines to pyrazolopyridines by ring-opening/closing reaction in aqueous NaOH. RSC Adv 2025; 15:2078-2085. [PMID: 39845108 PMCID: PMC11751703 DOI: 10.1039/d4ra06345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
An isomerization reaction of 7-aryl-3-formylpyrazolo[1,5-a]pyrimidines to 5-aroyl-NH-pyrazolo[3,4-b]pyridines proceeding with high yields in aqueous NaOH under microwave conditions is reported. This unprecedented transformation occurs by adding and eliminating a water molecule via an ANRORC mechanism (adding the nucleophile, ring-opening, and ring-closing) studied using DFT calculations. The product's utility was proved as they have aroyl and NH groups that simple methods and readily available reagents easily modified; likewise, their optical properties were studied, highlighting their high potential as highly emissive modular dyes (φ F up to 99%). NMR, HRMS, and X-ray diffraction analysis resolved the products' structures.
Collapse
Affiliation(s)
- Carlos Cifuentes
- Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Nestor Bravo
- Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Daniel Restrepo
- Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Mario Macías
- Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Jaime Portilla
- Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|
2
|
Melo-Hernández S, Ríos MC, Portilla J. Chemistry and properties of fluorescent pyrazole derivatives: an approach to bioimaging applications. RSC Adv 2024; 14:39230-39241. [PMID: 39664246 PMCID: PMC11632951 DOI: 10.1039/d4ra07485h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024] Open
Abstract
Fluorescent bioimaging is a crucial technique for in vivo studies in real cell samples, providing vital information about the metabolism of ions or molecules of biological and pharmaceutical significance. This technique typically uses probes based on organic small-molecule fluorophores, with N-heteroaromatic scaffolds playing an essential role due to their exceptional electronic properties and biocompatibility. Among these, pyrazole derivatives stand out as particularly promising due to their high synthetic versatility and structural diversity. This review highlights prominent examples from the period 2020-2024, focusing on the chemistry, properties, and bioimaging applications of fluorescent pyrazole derivatives. By highlighting the latest advancements in this field, this manuscript aims to inspire and motivate researchers, emphasizing the potential impact of this work on the future of bioimaging.
Collapse
Affiliation(s)
- Santiago Melo-Hernández
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - María-Camila Ríos
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|
3
|
Braga CB, Perli G, Wang Q, Wylie L, Bertuzzi DL, Soares MCP, Ramos MD, Ruiz J, Padua A, Astruc D, Ornelas C. Unveiling Hierarchical Self-Assembly of Triazolylferrocenyl Dendrimers: Producing Non-Traditional Intrinsically Green Fluorescent Vesosomes for Nanotheranostics. Adv Healthc Mater 2024; 13:e2402888. [PMID: 39279325 DOI: 10.1002/adhm.202402888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Dendrimers and supramolecular chemistry continue to fascinate researchers due to the endless unrevealed potential of their combination. This study investigates the self-assembly process of a series of hydrophobic triazolylferrocenyl dendrimers in aqueous medium. Deep investigation through NMR spectroscopy, absorption UV-vis spectroscopy along with theoretical simulations demonstrates that the ferrocenyl moieties interact intramolecularly and intermolecularly driving the self-assembly process. Data obtained by DLS, NTA, SEM, TEM, and EF-TEM demonstrate that these dendrimers, in water, spontaneously self-assemble through a hierarchical process. The dendrimers first self-assemble into uniform nanovesicles, which in turn self-assemble into larger vesosomes. The resulting vesosomes emit green non-traditional intrinsic fluorescence, which is a property that emerged from the self-assembled architectures. The vesosomes are efficiently uptaken by cancer cells and induce significant cytotoxic activity against the cancer cell line MCF-7, up to the submicromolar concentration. Positive dendritic effects are identified in the fluorescence intensity and in the cytotoxic activity of the vesosomes, which follow the trend G0-9Fc < G1-27Fc < G2-81Fc. This work showcases the remarkable potential of combining the two dynamic fields of dendrimers and supramolecular chemistry, which resulted in green fluorescent vesosomes capable of performing the dual role of cell imaging and killing, with potential applications in nanotheranostics.
Collapse
Affiliation(s)
- Carolyne B Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154 Campinas, Sao Paulo, 13083-970, Brazil
| | - Gabriel Perli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154 Campinas, Sao Paulo, 13083-970, Brazil
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Donostia-San Sebastián, 20018, Spain
| | - Qi Wang
- Groupe Nanosciences Moléculaires et Catalyse, Institut des Sciences Moléculaires, UMR CNRS N° 5255, Université Bordeaux I, 351, Cours de la Libération, Talence, Cedex, 33405, France
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115, Bonn, Germany
| | - Diego L Bertuzzi
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154 Campinas, Sao Paulo, 13083-970, Brazil
| | - Marco C P Soares
- Laboratory of Photonic Materials and Devices, Cidade Universitaria Zeferino Vaz, School of Mechanical Engineering, University of Campinas, Rua Mendeleyev 200 Campinas, Sao Paulo, 13083-860, Brazil
| | - Miguel D Ramos
- Instituto de Química, Universidade de São Paulo, USP, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Jaime Ruiz
- Groupe Nanosciences Moléculaires et Catalyse, Institut des Sciences Moléculaires, UMR CNRS N° 5255, Université Bordeaux I, 351, Cours de la Libération, Talence, Cedex, 33405, France
| | - Agilio Padua
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, Lyon, 69342, France
| | - Didier Astruc
- Groupe Nanosciences Moléculaires et Catalyse, Institut des Sciences Moléculaires, UMR CNRS N° 5255, Université Bordeaux I, 351, Cours de la Libération, Talence, Cedex, 33405, France
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154 Campinas, Sao Paulo, 13083-970, Brazil
- ChemistryX, R&D Department, R&D and Consulting Company, Funchal, 9000, Portugal
- Dendriwave, R&D Department, Research & Development Start-Up Company, Funchal, 9000, Portugal
| |
Collapse
|
4
|
Camargo D, Cifuentes C, Castillo JC, Portilla J. Microwave-assisted synthesis and functionalization of 2-arylimidazo[1,2- a]pyrimidin-5(8 H)-ones. RSC Adv 2024; 14:22368-22373. [PMID: 39010922 PMCID: PMC11247617 DOI: 10.1039/d4ra03948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Despite the limited applications and scarcity of commercial examples of imidazo[1,2-a]pyrimidines, their exceptional properties hold great potential, representing a significant challenge in discovering more critical applications. Herein, we present a microwave-assisted approach for preparing 2-arylimidazo[1,2-a]pyrimidin-5(8H)-ones and their alkylation and bromination products using easily accessible and inexpensive reagents, thus offering a promising avenue for further search. Notably, the photophysical properties of an N-alkyl derivative were investigated, and the results highlight the high potential of these compounds as modular fluorophores. All the products were obtained with high yields using highly efficient protocols, and the regioselectivity of the reactions was determined on the basis of NMR measurements and X-ray diffraction analysis.
Collapse
Affiliation(s)
- Delascar Camargo
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Carlos Cifuentes
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Juan-Carlos Castillo
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia Avenida Central del Norte 39-115 Tunja Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|
5
|
Li Y, Liu T, Sun J. Recent Advances in N-Heterocyclic Small Molecules for Synthesis and Application in Direct Fluorescence Cell Imaging. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020733. [PMID: 36677792 PMCID: PMC9864447 DOI: 10.3390/molecules28020733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Nitrogen-containing heterocycles are ubiquitous in natural products and drugs. Various organic small molecules with nitrogen-containing heterocycles, such as nitrogen-containing boron compounds, cyanine, pyridine derivatives, indole derivatives, quinoline derivatives, maleimide derivatives, etc., have unique biological features, which could be applied in various biological fields, including biological imaging. Fluorescence cell imaging is a significant and effective imaging modality in biological imaging. This review focuses on the synthesis and applications in direct fluorescence cell imaging of N-heterocyclic organic small molecules in the last five years, to provide useful information and enlightenment for researchers in this field.
Collapse
Affiliation(s)
- Yanan Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Tao Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Correspondence:
| |
Collapse
|
6
|
Franco MS, Saba S, Rafique J, Braga AL. KIO
4
‐mediated Selective Hydroxymethylation/Methylenation of Imidazo‐Heteroarenes: A Greener Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marcelo Straesser Franco
- Departamento de Química Universidade Federal de Santa Catarina—UFSC Florianópolis 88040-900 SC-Brazil
| | - Sumbal Saba
- Instituto de Química Universidade Federal de Goiás—UFG Goiânia 74690-900 GO-Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul—UFMS Campo Grande 79074-460 MS-Brazil
| | - Antonio Luiz Braga
- Departamento de Química Universidade Federal de Santa Catarina—UFSC Florianópolis 88040-900 SC-Brazil
- Department of Chemical Sciences Faculty of Science University of Johannesburg Doornfontein 2028 South Africa
| |
Collapse
|
7
|
Perli G, Wang Q, Braga CB, Bertuzzi DL, Fontana LA, Soares MCP, Ruiz J, Megiatto JD, Astruc D, Ornelas C. Self-Assembly of a Triazolylferrocenyl Dendrimer in Water Yields Nontraditional Intrinsic Green Fluorescent Vesosomes for Nanotheranostic Applications. J Am Chem Soc 2021; 143:12948-12954. [PMID: 34291930 DOI: 10.1021/jacs.1c05551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The promising field of nanomedicine stimulates a continuous search for multifunctional nanotheranostic systems for imaging and drug delivery. Herein, we demonstrate that application of supramolecular chemistry's concepts in dendritic assemblies can enable the formation of advanced dendrimer-based nanotheranostic devices. A dendrimer bearing 81 triazolylferrocenyl terminal groups adopts a more compact shell-like structure in polar solvents with the ferrocenyl peripheral groups backfolding toward the hydrophobic dendrimer interior, while exposing the more polar triazole moieties as the dendritic shell. Akin to lipids, the compact dendritic structure self-assembles into uniform nanovesicles that in turn self-assemble into larger vesosomes in water. The vesosomes emit green nontraditional intrinsic fluorescence (NTIL), which is an emerging property as there are no classical fluorophores in the dendritic macromolecular structure. This work confirms the hypothesis that the NTIL emission is greatly enhanced by rigidification of the supramolecular assemblies containing heteroatomic subluminophores (HASLs) and by the presence of electron rich functional groups on the periphery of dendrimers. This work is the first one detecting NTIL in ferrocenyl-terminated dendrimers. Moreover, the vesosomes are stable in biological medium, are uptaken by cells, and show cytotoxic activity against cancer cells. Accordingly, the self-organization of these dendrimers into tertiary structures promotes the emergence of new properties enabling the same component, in this case, ferrocenyl group, to function as both antitumoral drug and fluorophore.
Collapse
Affiliation(s)
- Gabriel Perli
- Institute of Chemistry, Rua Josue de Castro, Cidade Universitaria Zeferino Vaz, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Qi Wang
- Univ. Bordeaux, ISM, UMR CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Carolyne B Braga
- Institute of Chemistry, Rua Josue de Castro, Cidade Universitaria Zeferino Vaz, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Diego L Bertuzzi
- Institute of Chemistry, Rua Josue de Castro, Cidade Universitaria Zeferino Vaz, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Liniquer A Fontana
- Institute of Chemistry, Rua Josue de Castro, Cidade Universitaria Zeferino Vaz, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Marco C P Soares
- Laboratory of Photonic Materials and Devices, Rua Mendeleyev 200, Cidade Universitaria Zeferino Vaz, School of Mechanical Engineering, University of Campinas, 13083-860 Campinas, SP, Brazil
| | - Jaime Ruiz
- Univ. Bordeaux, ISM, UMR CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Jackson D Megiatto
- Institute of Chemistry, Rua Josue de Castro, Cidade Universitaria Zeferino Vaz, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Didier Astruc
- Univ. Bordeaux, ISM, UMR CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Catia Ornelas
- Institute of Chemistry, Rua Josue de Castro, Cidade Universitaria Zeferino Vaz, University of Campinas, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
8
|
Franco MS, Saba S, Rafique J, Braga AL. KIO 4 -mediated Selective Hydroxymethylation/Methylenation of Imidazo-Heteroarenes: A Greener Approach. Angew Chem Int Ed Engl 2021; 60:18454-18460. [PMID: 34097781 DOI: 10.1002/anie.202104503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Herein, we report a KIO4 -mediated, sustainable and chemoselective approach for the one-pot C(sp2 )-H bond hydroxymethylation or methylenation of imidazo-heteroarenes with formaldehyde, generated in situ via the oxidative cleavage of ethylene glycol or glycerol (renewable reagents) through the Malaprade reaction. In the presence of ethylene glycol, a series of 3-hydroxymethyl-imidazo-heteroarenes was obtained in good to excellent yields. These compounds are important intermediates to access pharmaceutical drugs, e.g., Zolpidem. Furthermore, by using glycerol, bis(imidazo[1,2-a]pyridin-3-yl)methane derivatives were selectively obtained in good to excellent yields.
Collapse
Affiliation(s)
- Marcelo Straesser Franco
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC-Brazil
| | - Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900, GO-Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade, Federal do Mato Grosso do Sul-UFMS, Campo Grande, 79074-460, MS-Brazil
| | - Antonio Luiz Braga
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC-Brazil.,Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|