1
|
Li Y, Zhuang D, Qiu R, Zhu J. Aromaticity-promoted CS 2 activation by heterocycle-bridged P/N-FLPs: a comparative DFT study with CO 2 capture. Phys Chem Chem Phys 2022; 24:2521-2526. [PMID: 35023524 DOI: 10.1039/d1cp05319a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Carbon dioxide (CO2) capture has attracted considerable attention from both experimental and theoretical chemists. In comparison, carbon disulfide (CS2) activation is less developed. Here, we carry out a thorough comparative density functional theory study to examine the reaction mechanisms of CS2 activation by five-membered heterocycle-bridged P/N frustrated Lewis pairs (FLPs). Calculations suggest that despite a weaker carbon-sulfur bond, all the CS2 activations have higher reaction barriers than the CO2 capture, which could be attributed to electrostatic repulsion between FLPs and CS2 caused by the reversed polarity of CS in CS2 rather than the electrostatic attraction in CO2 capture. In addition, aromaticity is found to play an important role in CS2 capture as it stabilizes both the transition states and products in heterocycle-bridged FLPs. All these findings could be useful for experimentalists to realize small molecule activations by FLPs.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fujian Provincial Key Laboratory of Theoretical Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Danling Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fujian Provincial Key Laboratory of Theoretical Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Rulin Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fujian Provincial Key Laboratory of Theoretical Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fujian Provincial Key Laboratory of Theoretical Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
2
|
Protchenko AV, Fuentes MÁ, Hicks J, McManus C, Tirfoin R, Aldridge S. Reactions of a diborylstannylene with CO 2 and N 2O: diboration of carbon dioxide by a main group bis(boryl) complex. Dalton Trans 2021; 50:9059-9067. [PMID: 33973614 DOI: 10.1039/d1dt01216a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The reactions of the boryl-substituted stannylene Sn{B(NDippCH)2}2 (1) with carbon dioxide have been investigated and shown to proceed via pathways involving insertion into the Sn-B bond(s). In the first instance this leads to formation of the (boryl)tin(ii) borylcarboxylate complex Sn{B(NDippCH)2}{O2CB(NDippCH)2} (2), which has been structurally characterized and shown to feature a κ2 mode of coordination of the [(HCDippN)2BCO2]- ligand at the metal centre. 2 undergoes B-O reductive elimination in hexane solution (in the absence of further CO2) to give the boryl(borylcarboxylate)ester {(HCDippN)2B}O2C{B(NDippCH)2} (3) i.e. the product of formal diboration of carbon dioxide. Alternatively, 2 can assimilate a second equivalent of CO2 to give the homoleptic bis(borylcarboxylate) Sn{O2CB(NDippCH)2}2 (4), which can be prepared via an alternative route from SnBr2 and the potassium salt of [(HCDippN)2BCO2]-, and structurally characterized as its DMAP (N,N-dimethylaminopyridine) adduct. Structural and reactivity studies also point to the possibility for extrusion of CO from the [(HCDippN)2BCO2]- fragment to generate the boryloxy system [(HCDippN)2BO]-, a ligand which can be generated directly from 1via reaction with N2O. The initially formed unsymmetrical species Sn{B(NDippCH)2}{OB(NDippCH)2} has been shown to be amenable to crystallographic study in the solid state, but to undergo ligand redistribution in solution to generate a mixture of 1 and the bis(boryloxy) complex Sn{OB(NDippCH)2}2.
Collapse
Affiliation(s)
- Andrey V Protchenko
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Caitilín McManus
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Rémi Tirfoin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
3
|
Jiang Y, Yuan Q, Cao W, Rohdenburg M, Nierstenhöfer MC, Li Z, Yang Y, Zhong C, Jenne C, Warneke J, Sun H, Sun Z, Wang XB. Gaseous cyclodextrin- closo-dodecaborate complexes χCD·B 12X 122- (χ = α, β, and γ; X = F, Cl, Br, and I): electronic structures and intramolecular interactions. Phys Chem Chem Phys 2021; 23:13447-13457. [PMID: 34008657 DOI: 10.1039/d1cp01131f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fundamental understanding of cyclodextrin-closo-dodecaborate inclusion complexes is of great interest in supramolecular chemistry. Herein, we report a systematic investigation on the electronic structures and intramolecular interactions of perhalogenated closo-dodecaborate dianions B12X122- (X = F, Cl, Br and I) binding to α-, β-, and γ-cyclodextrins (CDs) in the gas phase using combined negative ion photoelectron spectroscopy (NIPES) and density functional theory (DFT) calculations. The vertical detachment energy (VDE) of each complex and electronic stabilization of each dianion due to the CD binding (ΔVDE, relative to the corresponding isolated B12X122-) are determined from the experiments along α-, β- and γ-CD in the form of VDE (ΔVDE): 4.00 (2.10), 4.33 (2.43), and 4.30 (2.40) eV in X = F; 4.09 (1.14), 4.64 (1.69), and 4.69 (1.74) eV in X = Cl; 4.11 (0.91), 4.58 (1.38), and 4.70 (1.50) eV in X = Br; and 3.54 (0.74), 3.88 (1.08), and 4.05 (1.25) eV in X = I, respectively. All complexes have significantly higher VDEs than the corresponding isolated dodecaborate dianions with ΔVDE spanning from 0.74 eV at (α, I) to 2.43 eV at (β, F), sensitive to both host CD size and guest substituent X. DFT-optimized complex structures indicate that all B12X122- prefer binding to the wide openings of CDs with the insertion depth and binding motif strongly dependent on the CD size and halogen X. Dodecaborate anions with heavy halogens, i.e., X = Cl, Br, and I, are found outside of α-CD, while B12F122- is completely wrapped by γ-CD. Partial embedment of B12X122- into CDs is observed for the other complexes via multipronged B-XH-O/C interlocking patterns. The simulated spectra based on the density of states agree well with those of the experiments and the calculated VDEs well reproduce the experimental trends. Molecular orbital analyses suggest that the spectral features at low binding energies originated from electrons detached from the dodecaborate dianion, while those at higher binding energies are derived from electron detachment from CDs. Energy decomposition analyses reveal that the electrostatic interaction plays a dominating role in contributing to the host-guest interactions for the X = F series partially due to the formation of a O/C-HX-B hydrogen bonding network, and the dispersion forces gradually become important with the increase of halogen size.
Collapse
Affiliation(s)
- Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington 99352, USA.
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington 99352, USA.
| | - Markus Rohdenburg
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany and Institut für Angewandte und Physikalische Chemie, Universität Bremen, Fachbereich 2-Biologie/Chemie, 28359 Bremen, Germany
| | - Marc C Nierstenhöfer
- Fakultät für Mathematik und Naturwissenschaften, Anorganische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Zhipeng Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Cheng Zhong
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Carsten Jenne
- Fakultät für Mathematik und Naturwissenschaften, Anorganische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany and Leibniz Institute of Surface Engineering (IOM), Sensoric Surfaces and Functional Interfaces, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington 99352, USA.
| |
Collapse
|
4
|
Jenne C, Nierstenhöfer MC, van Lessen V. Activation of CS 2 and CO 2 by Silylium Cations. Chemistry 2021; 27:3288-3291. [PMID: 33215771 PMCID: PMC7898686 DOI: 10.1002/chem.202005003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 12/02/2022]
Abstract
The hydride‐bridged silylium cation [Et3Si−H−SiEt3]+, stabilized by the weakly coordinating [Me3NB12Cl11]− anion, undergoes, in the presence of excess silane, a series of unexpected consecutive reactions with the valence‐isoelectronic molecules CS2 and CO2. The final products of the reaction with CS2 are methane and the previously unknown [(Et3Si)3S]+ cation. To gain insight into the entire reaction cascade, numerous experiments with varying conditions were performed, intermediate products were intercepted, and their structures were determined by X‐ray crystallography. Besides the [(Et3Si)3S]+ cation as the final product, crystal structures of [(Et3Si)2SMe]+, [Et3SiS(H)Me]+, and [Et3SiOC(H)OSiEt3]+ were obtained. Experimental results combined with supporting quantum‐chemical calculations in the gas phase and solution allow a detailed understanding of the reaction cascade.
Collapse
Affiliation(s)
- Carsten Jenne
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Marc C Nierstenhöfer
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Valentin van Lessen
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| |
Collapse
|