1
|
Sivaev IB. Bis(Dicarbollide) Complexes of Transition Metals: How Substituents in Dicarbollide Ligands Affect the Geometry and Properties of the Complexes. Molecules 2024; 29:3510. [PMID: 39124915 PMCID: PMC11314212 DOI: 10.3390/molecules29153510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The interaction between different types of substituents in dicarbollide ligands and their influence on the stabilization of various rotational conformers (rotamers) of transition metal bis(dicarbollide) complexes [3,3'-M(1,2-C2B9H11)2]- are considered. It has been shown that the formation of intramolecular CH···X hydrogen bonds between dicarbollide ligands is determined by the size of the proton acceptor atom X rather than its electronegativity. Due to the stabilization of rotamers with different dipole moments, intramolecular hydrogen bonds between ligands in transition metal bis(dicarbollide) complexes can have a significant impact on the biological properties of their derivatives. In the presence of external complexing metals, weak intramolecular CH···X hydrogen bonds can be broken to form stronger X->M donor-acceptor bonds. This process is accompanied by the mutual rotation of dicarbollide ligands and can be used in sensors and molecular switches based on transition metal bis(dicarbollide) complexes.
Collapse
Affiliation(s)
- Igor B Sivaev
- A. N. Nesmeyanov Institute of Organoelement Compounds, 28 Vavilov Str., Moscow 119991, Russia
| |
Collapse
|
2
|
Bienenmann RLM, de Vries MR, Lutz M, Broere DLJ. Understanding the Remarkable Stability of Well-Defined Dinuclear Copper(I) Carbene Complexes. Chemistry 2024; 30:e202400283. [PMID: 38630913 DOI: 10.1002/chem.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
The synthesis of a well-defined dicopper carbene complex supported by the PNNP (2,7-bis(di-tert-butylphosphaneyl)methyl-1,8-naphthyridine) expanded pincer ligand is reported. This carbene complex is remarkably stable, even in the presence of air and water. The reactivity of this complex was explored towards typical carbene transfer substrates and its electronic structure was investigated. Using a combination of experiments and DFT calculations, the principles that underly the stability of dinuclear carbene complexes are probed.
Collapse
Affiliation(s)
- Roel L M Bienenmann
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Marianne R de Vries
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Daniël L J Broere
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
3
|
Xu S, Zhang Q, Li Y, Luo C, Lai R, Guo L, Hai L, Lv G, Wu Y. Pathway to Construct α-Acyloxy Esters by B(C 6F 5) 3-Catalyzed O-H Insertion of Carboxylic Acids with Sulfoxonium Ylides. J Org Chem 2023; 88:15335-15349. [PMID: 37875403 DOI: 10.1021/acs.joc.3c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report the first example of B(C6F5)3-catalyzed O-H insertion reaction of sulfoxonium ylides and carboxylic acids, achieving efficient construction of diester moieties under metal-free condition. This protocol is characterized by broad substrate tolerance, particularly for various phenylacetic acids, and good compatibility with water/air condition, which is superior to most other methods.
Collapse
Affiliation(s)
- Shuran Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Qingyao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Yuanyuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Cankun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|
4
|
Half-Sandwich Nickelacarboranes Derived from [7-(MeO(CH2)2S)-7,8-C2B9H11]−. INORGANICS 2023. [DOI: 10.3390/inorganics11030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
New carboranyl thioethers 1-MeO(CH2)nS-1,2-C2B10H11 (n = 2, 3) were prepared by the alkylation of the trimethylammonium salt of 1-mercapto-ortho-carborane with 1-bromo- 2-methoxyethane and 1-bromo-3-methoxypropane, respectively. Their deboronation with cesium fluoride in ethanol gave the corresponding nido-carboranes Cs[7-MeO(CH2)nS-7,8-C2B9H11] (n = 2, 3). The reactions of Cs[7-MeO(CH2)2S-7,8-C2B9H11] with various nickel(II) phosphine complexes [(dppe)NiCl2] and [(R’R2P)2NiCl2] (R = R’ = Ph, Bu; R = Me, R’ = Ph; R = Ph, R’ = Me, Et) were studied and a series of nickelacarboranes 3,3-dppe-1-MeO(CH2)2S-closo-3,1,2-NiC2B9H10 and 3,3- (R’R2P)2-1-MeO(CH2)2S-closo-3,1,2-NiC2B9H10 (R = R’ = Bu; R = Me, R’ = Ph; R = Ph, R’ = Me, Et) was prepared. The molecular crystal structure of 3,3-dppe-1-MeO(CH2)2S-closo-3,1,2-NiC2B9H10 was determined by single-crystal X-ray diffraction.
Collapse
|
5
|
Semyonov DK, Slushko GK, Stogniy MY, Anufriev SA, Godovikov IA, Suponitsky KY, Bregadze VI, Sivaev IB. Interligand Interactions in Half-Sandwich Nickelacarboranes with Phosphine Ligands: Away from Skeletal Rearrangements. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Dmitriy K. Semyonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119334, Russia
- M. V. Lomonosov Institute of Fine Chemical Technology, MIREA − Russian Technological University, 86 Vernadsky Av., Moscow, 119571, Russia
| | - Georgii K. Slushko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119334, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., Moscow, 125047, Russia
| | - Marina Yu. Stogniy
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119334, Russia
| | - Sergey A. Anufriev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119334, Russia
| | - Ivan A. Godovikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119334, Russia
| | - Kyrill Yu. Suponitsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119334, Russia
- G. V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, Moscow, 117997, Russia
| | - Vladimir I. Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119334, Russia
| | - Igor B. Sivaev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119334, Russia
- Faculty of Chemistry, National Research University Higher School of Economics (HSE University), 7 Vavilov Str., Moscow, 117312, Russia
| |
Collapse
|
6
|
Choi H, Choi J, Lee K. Nickel Carbene-Mediated One-Carbon Homologative γ-Butyrolactonization. Org Lett 2022; 24:9238-9242. [PMID: 36480446 DOI: 10.1021/acs.orglett.2c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this report, we present a highly efficient approach for the synthesis of β,γ-disubstituted γ-butyrolactone motifs. This newly developed strategy is based on the combination of a diastereoselective aldol and a nickel carbene-mediated γ-butyrolactonization and uses an effective intramolecular ring closure to rapidly access a range of functionalized chiral γ-butyrolactones. This single-step approach was applied to produce straightforward asymmetric syntheses of (-)-talaumidin methyl ether, (+)-veraguensin, and (+)-dubiusamine A and a formal synthesis of (+)-phaseolinic acid as one of the shortest syntheses disclosed to date.
Collapse
Affiliation(s)
- Hosam Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joohee Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
7
|
Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Nickel-Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2'-Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202213943. [PMID: 36300599 DOI: 10.1002/anie.202213943] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
In contrast to previous approaches to chiral α-aryl carboxylic acids that based on reactions using hazardous gases, pressurized setup and mostly noble metal catalysts, in this work, a nickel-catalyzed general, efficient and highly enantioselective carboxylation reaction of racemic benzylic (pseudo)halides under mild conditions using atmospheric CO2 has been developed. A unique chiral 2,2'-bipyridine ligand named Me-SBpy featuring compact polycyclic skeleton enabled both high reactivity and stereoselectivity. The utility of this method has been demonstrated by synthesis of various chiral α-aryl carboxylic acids (30 examples, up to 95 % yield and 99 : 1 er), including profen family anti-inflammatory drugs and transformations using the acids as key intermediates. Based on mechanistic experimental results, a plausible catalytic cycle involving Ni-complex/radical equilibrium and Lewis acid-assisted CO2 activation has been proposed.
Collapse
Affiliation(s)
- Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tao Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Saima Perveen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
New Aspects of Ruthenium-Mediated Polyhedral Contraction of Monocarbollides. INORGANICS 2022. [DOI: 10.3390/inorganics10100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It has been shown that the interaction of tris(triphenylphosphine)ruthenium dichloride RuCl2(PPh3)3 (1) with 10-vertex monocarborane [6-Ph-nido-6-CB9H11]−[Et4N]+ (2) under mild thermolysis conditions is not selective due to the undesired coordination of ruthenium to a phenyl substituent in the carborane and phosphine ligands, giving the series of new classical and non-classical metallacarborane complexes. In contrast, the reaction of 1 and monocarborane [arachno-6-CB9H14]−[Et4N]+ (3) proceeds more selectively with the formation of the only one product, a isocloso-structured metallacarborane. The structures of two ruthenacarboranes were resolved by X-ray diffraction.
Collapse
|
9
|
Liu Y, Zhan M, Li P. Regio‐ and diasteroselective C‐silylation of enolate enabled by a β‐boronyl group. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Liu
- National Drug Clinical Trial Institution GCP Office, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| | - Miao Zhan
- Institute of Medical Research, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road Xi'an 710054 China
| |
Collapse
|
10
|
Gao L, Liu S, Wang Z, Mao Y, Shi S. Ligand‐ and Additive‐Free CuCl
2
‐Catalyzed
para
‐C−H Alkylation of Aniline Derivatives via Carbene Insertion. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lei Gao
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 P. R. China
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shang-hai 200032 P. R. China
| | - Sheng Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shang-hai 200032 P. R. China
| | - Zi‐Chao Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shang-hai 200032 P. R. China
| | - Yongjun Mao
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 P. R. China
| | - Shi‐Liang Shi
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 P. R. China
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shang-hai 200032 P. R. China
| |
Collapse
|
11
|
Synthesis and Catalytic Properties of Novel Ruthenacarboranes Based on nido-[5-Me-7,8-C2B9H10]2− and nido-[5,6-Me2-7,8-C2B9H9]2− Dicarbollide Ligands. Catalysts 2021. [DOI: 10.3390/catal11111409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The effect of methyl substituents in the lower belt of dicarbollide ligands on the redox potential of ruthenacarboranes based thereof, as well as the ability of the metallacarboranes obtained to catalyze radical polymerization with atom transfer were studied. For this purpose, a new approach to the synthesis of closo-ruthenacarboranes based on substituted dicarbollide ligands was developed and six new complexes 3,3-(Ph2P(CH2)4PPh2)-3-H-3-Cl-9-Me-12-X-closo-3,1,2-RuC2B9H9, 3,3,8-(Ph2P(CH2)4PPh-μ-(C6H4-o))-3-Cl-9-Me-12-X-closo-3,1,2-RuC2B9H8 and 3,3,4,8-(Ph2P(CH2)4P-μ-(C6H4-o)2)-3-Cl-9-Me-9-X-closo-3,1,2-RuC2B9H7 (X = H, Me) were synthetized and characterized by single crystal X-ray diffraction, NMR and ESR spectroscopy and MALDI TOF mass-spectrometry. Comparison of the values of the redox potentials of the synthesized ruthenium complexes in 1,2-dichloroethane with the values previously found for the corresponding ruthenacarboranes based on the parent dicarbollide anion showed that the introduction of methyl substituents into the carborane cage led to a decrease in the redox potentials of the complexes, which made them more preferable catalysts for ATRP. Test experiments on the polymerization of MMA showed that the synthesized ruthenacarboranes were effective catalysts for ATRP, the most active being the complex with two methyl groups and two ortho-phenylenecycloboronated fragments.
Collapse
|
12
|
Stogniy MY, Erokhina SA, Suponitsky KY, Markov VY, Sivaev IB. Synthesis and crystal structures of nickel(ii) and palladium(ii) complexes with o-carboranyl amidine ligands. Dalton Trans 2021; 50:4967-4975. [PMID: 33877195 DOI: 10.1039/d1dt00373a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A number of new nido-carboranyl amidines 10-R(CH2)nNHC(Et)[double bond, length as m-dash]HN-7,8-C2B9H11 (n = 2, R = OH, OMe, and NMe2; n = 3, R = OH) were synthesized by the nucleophilic addition of amino alcohols and N,N-dimethylethylenediamine to the highly activated -C[triple bond, length as m-dash]N+- triple bond of the 10-propionitrilium derivative of nido-carborane. A similar reaction of 10-EtC[triple bond, length as m-dash]N-7,8-C2B9H11 with ethylenediamine unexpectedly resulted in the cleavage of the C[triple bond, length as m-dash]N bond to form the ammonium derivative 10-H3N-7,8-C2B9H11. The complexation of the synthesized carboranyl amidines 10-MeO(CH2)2NHC(Et)[double bond, length as m-dash]HN-7,8-C2B9H11 and 10-Me2N(CH2)2NHC(Et)[double bond, length as m-dash]HN-7,8-C2B9H11 with nickel and palladium phosphine complexes [(Ph3P)2MCl2] (M = Ni, Pd) was studied. The reactions with 10-MeO(CH2)2NHC(Et)[double bond, length as m-dash]HN-7,8-C2B9H11 result in half-sandwiched metallacarborane complexes with the retention of one triphenylphosphine ligand [3-Ph3P-3-(8-MeOCH2CH2N[double bond, length as m-dash]C(Et)NH)-3,1,2-MC2B9H10], while the reactions with 10-Me2N(CH2)2NHC(Et)[double bond, length as m-dash]HN-7,8-C2B9H11 proceed with the complete loss of the phosphine ligands and lead to the formation of complexes with the η5:κ2(N,N')-coordinated carboranyl amidine ligand [3,3-(8-Me2NCH2CH2N[double bond, length as m-dash]C(Et)NH)-3,1,2-MC2B9H10]. The crystal molecular structures of the synthesized complexes were determined by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Marina Yu Stogniy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia.
| | | | | | | | | |
Collapse
|
13
|
Liu XR, Cui PF, Guo ST, Yuan RZ, Jin GX. Stepwise B–H bond activation of a meta-carborane. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00732g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stepwise multiple B–H bond activation is a major challenge in synthetic chemistry.
Collapse
Affiliation(s)
- Xin-Ran Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Peng-Fei Cui
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Shu-Ting Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Run-Ze Yuan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|