1
|
Zhang Q, Ali T, Ponnamperumage TNF, Lin Z, Setu NI, Awoyera WO, Oddiri RT, Rasmussen AD, Felli MC, Frick DN, Peng X. A Photoinducible DNA Cross-Linking Agent with Potent Cytotoxicity and Selectivity Toward Triple-Negative Breast Cancer Cell Line. Chem Res Toxicol 2025; 38:216-228. [PMID: 39721055 DOI: 10.1021/acs.chemrestox.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
DNA interstrand cross-links (ICLs) are the sources of the cytotoxicity of many anticancer agents. Selenium compounds showed great potential as anticancer drugs. In this work, we synthesized a binaphthalene analog 1 containing phenyl selenide (-SePh) as the leaving group and investigated its photochemical reactivity toward DNA as well as its cytotoxicity and selectivity. DNA ICLs were not observed with binaphthalene phenyl selenide 1 without UV irradiation, while ∼15% DNA ICL products were detected with UV irradiation, indicating a photoresponsive property of 1. The trapping reactions with TEMPO and MeONH2, respectively, suggested that free radicals and carbocations are involved in the DNA cross-linking process induced by the photoirradiation of 1. The photochemical reactivity of 1 toward DNA was sequence-dependent. DNA interstrand cross-linking occurred mainly at dG/dC base pairs, while monoalkylations occurred at dGs and dAs. Additionally, we have demonstrated that 1 alone without UV irradiation did not inhibit cancer cell growth even with a concentration of 100 μM, while the cytotoxicity of 1 toward cancer cells was significantly enhanced upon 350 nm irradiation with an IC50 of 1.7 μM. No cytotoxicity was observed toward normal epithelial MCF 10A cells, regardless of UV exposure, in the presence or absence of 1. The alkaline comet assay suggested that the photoinduced cytotoxicity of 1 is correlated to cellular DNA damage. Normal cells showed higher levels of GSH than cancer cells and exhibited efficient DNA repair mechanisms, which can both prevent and repair potential DNA damage induced by 1, contributing to the selective cytotoxicity of the prodrug toward triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Taufeeque Ali
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Thilini Nimasha Fernando Ponnamperumage
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Zechao Lin
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Nurul Islam Setu
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Wasiu Olaniyi Awoyera
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Regina Titilayo Oddiri
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Adam Davis Rasmussen
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Mary Collette Felli
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - David N Frick
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
2
|
Zhang Q, Ali T, Lin Z, Peng X. Development of 4,4'-dibromobinaphthalene analogues with potent photo-inducible DNA cross-linking capability and cytotoxicity towards breast MDA-MB 468 cancer cells. Bioorg Chem 2023; 140:106769. [PMID: 37633128 DOI: 10.1016/j.bioorg.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2023]
Abstract
Photoinduced DNA cross-linking process showed advantages of high spatio-temporal resolution and control. We have designed, synthesized, and characterized several 4,4'-dibromo binaphthalene analogues (1a-f) that can be activated by 350 nm irradiation to induce various DNA damage, including DNA interstrand cross-links (ICL) formation, strand cleavages, and alkaline labile DNA lesions. The degree and types of DNA damage induced by these compounds depend on the leaving groups of the substrates, pH value of the buffer solution, and DNA sequences. The DNA ICL products were produced from the carbocations formed via the oxidation of free radicals photo-generated from 1a-f. Most of these compounds alone exhibited minimum cytotoxicity towards cancer cells while 350 nm irradiation greatly improved their anticancer effects (up to 40-fold enhancement) because of photo-induced cellular DNA damage. This work provides guidance for further design of photo-inducible DNA cross-linking agents as potent photo-activated anticancer prodrugs with good control over toxicity and selectivity.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States
| | - Taufeeque Ali
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States
| | - Zechao Lin
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States.
| |
Collapse
|
3
|
Jia Y, Sun J, Yu D, Wang L, Campbell A, Fan H, Sun H. Light and Hydrogen Peroxide Dual-responsive DNA Interstrand Crosslink Precursors with Potent Cytotoxicity. Bioorg Chem 2022; 130:106270. [DOI: 10.1016/j.bioorg.2022.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
|
4
|
Zhang Q, Lin Z, Peng X. Photo-Reactivity of Binaphthalene Triphenylphosphonium Salts: DNA Interstrand Cross-Link Formation and Substituent Effects. Chem Res Toxicol 2022; 35:1334-1343. [PMID: 35857929 DOI: 10.1021/acs.chemrestox.1c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Five novel 1,1'-binaphthalene analogues 1a-1e with triphenylphosphonium (TPP+) salts as a leaving group have been synthesized and characterized as photo-activatable DNA alkylating agents. Phototriggered release of the TPP+ group from 1a-1e generated naphthalenylmethyl-free radicals that were spontaneously transformed to the corresponding cations directly producing DNA interstrand cross-link (ICL) formation via alkylation. The substituents at position 4 not only affect the efficiency of ICL formation but also influence the reaction rate for DNA cross-linking. Groups with small or medium size favor ICL formation, while a bulky substituent (e.g., phenyl group) prevents DNA interstrand cross-linking. DNA alkylation by the naphthalenylmethyl cations photo-generated from 1a-1e occurs at dG, dC, and dA, while interstrand cross-linking took place with dG/dC base pairs. The TPP+ salts (1a-1e) are cations with both lipophilic and hydrophilic properties, which have great potential for biological applications.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin─Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Zechao Lin
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin─Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin─Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
5
|
Abdelgawwad AMA, Monari A, Tuñón I, Francés-Monerris A. Spatial and Temporal Resolution of the Oxygen-Independent Photoinduced DNA Interstrand Cross-Linking by a Nitroimidazole Derivative. J Chem Inf Model 2022; 62:3239-3252. [PMID: 35771238 PMCID: PMC9277591 DOI: 10.1021/acs.jcim.2c00460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage is ubiquitous in nature and is at the basis of emergent treatments such as photodynamic therapy, which is based on the activation of highly oxidative reactive oxygen species by photosensitizing O2. However, hypoxia observed in solid tumors imposes the necessity to devise oxygen-independent modes of action able to induce DNA damage under a low oxygen concentration. The complexity of these DNA damage mechanisms in realistic environments grows exponentially when taking into account light absorption and subsequent excited-state population, photochemical and (photo)-redox reactions, the multiple species involved in different electronic states, noncovalent interactions, multiple reaction steps, and the large number of DNA reactive sites. This work tackles all the intricate reactivity of a photosensitizer based on a nitroimidazole derivative reacting toward DNA in solution under UV light exposition. This is performed through a combination of ground- and excited-state quantum chemistry, classical molecular dynamics, and hybrid QM/MM simulations to rationalize in detail the formation of DNA interstrand cross-links (ICLs) exerted by the noncanonical noncovalent photosensitizer. Unprecedented spatial and temporal resolution of these phenomena is achieved, revealing that the ICL is sequence-specific and that the fastest reactions take place at AT, GC, and GT steps involving either the opposite nucleobases or adjacent Watson-Crick base pairs. The N7 and O6 positions of guanine, the N7 and N3 sites of adenine, the N4 position of cytosine, and the O2 atom of thymine are deemed as the most nucleophile sites and are positively identified to participate in the ICL productions. This work provides a multiscale computational protocol to study DNA reactivity with noncovalent photosensitizers, and contributes to the understanding of therapies based on photoinduced DNA damage at molecular and electronic levels. In addition, we believe the depth understanding of these processes should assist the design of new photosensitizers considering their molecular size, electronic properties, and the observed regioselectivity toward nucleic acids.
Collapse
Affiliation(s)
| | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75006 Paris, France.,Université de Lorraine and CNRS, UMR 7019 LPCT, F-5400 Nancy, France
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|