1
|
Chen WF, Lu JY, Li JJ, Lan YZ, Cheng JW, Yang GY. Sr 2[B 5O 8(OH)] 2 ⋅ [B(OH) 3] ⋅ H 2O: A Strontium Borate That Shows Deep-Ultraviolet-Transparent Nonlinear Optical Properties. Chemistry 2024; 30:e202400739. [PMID: 38497677 DOI: 10.1002/chem.202400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
A new noncentrosymmetric strontium borate, P1-Sr2[B5O8(OH)]2 ⋅ [B(OH)3] ⋅ H2O (1), has been synthesized under the hydrothermal condition. The P1-Sr2[B5O8(OH)]2 ⋅ [B(OH)3] ⋅ H2O shows a layered B-O network with 9-ring windows in the ab plane. Sr2+ cations, H3BO3, and H2O molecules are located in the voids of layers and interlayers, respectively. The P1-Sr2[B5O8(OH)]2 ⋅ [B(OH)3] ⋅ H2O is the first synthetic phase of veatchite, while the other three polymorphs are found in different natural minerals. This strontium borate is a potential deep-ultraviolet-transparent nonlinear-optical (NLO) crystal whose second-harmonic-generation (SHG) intensity is 1.7 times that of KH2PO4 (KDP) and is phase-matchable. The short wavelength cutoff edge of compound 1 is below 190 nm. Density functional theory (DFT) calculations show that the B-O units are responsible for the nonlinear optical property.
Collapse
Affiliation(s)
- Wei-Feng Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis, Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jing-Yi Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis, Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jing-Jing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis, Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - You-Zhao Lan
- Key Laboratory of the Ministry of Education for Advanced Catalysis, Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jian-Wen Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis, Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Li JJ, Chen WF, Lan YZ, Cheng JW. Recent Progress in Crystalline Borates with Edge-Sharing BO 4 Tetrahedra. Molecules 2023; 28:5068. [PMID: 37446729 DOI: 10.3390/molecules28135068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Crystalline borates have received great attention due to their various structures and wide applications. For a long time, the corner-sharing B-O unit is considered a basic rule in borate structural chemistry. The Dy4B6O15 synthesized under high-pressure is the first oxoborate with edge-sharing [BO4] tetrahedra, while the KZnB3O6 is the first ambient pressure borate with the edge-sharing [BO4] tetrahedra. The edge-sharing connection modes greatly enrich the structural chemistry of borates and are expected to expand new applications in the future. In this review, we summarize the recent progress in crystalline borates with edge-sharing [BO4] tetrahedra. We discuss the synthesis, fundamental building blocks, structural features, and possible applications of these edge-sharing borates. Finally, we also discuss the future perspectives in this field.
Collapse
Affiliation(s)
- Jing-Jing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Wei-Feng Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - You-Zhao Lan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Wen Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Gorelova L, Pakhomova A, Aprilis G, Yin Y, Laniel D, Winkler B, Krivovichev S, Pekov I, Dubrovinskaia N, Dubrovinsky L. Edge-sharing BO 4 tetrahedra and penta-coordinated silicon in the high-pressure modification of NaBSi 3O 8. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-pressure modification of NaBSi3O8 results in the first example of a borosilicate compound containing edge-sharing BO4 tetrahedra and SiO5 polyhedra.
Collapse
Affiliation(s)
- Liudmila Gorelova
- Crystallography Department, Institute of Earth Science, Saint Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
| | - Anna Pakhomova
- Deutsches Elektronen-Synchrotron (DESY), Petra III, Notkestraße 85, 22607 Hamburg, Germany
- European Synchrotron Radiation Facility, 71 Av. des Martyrs, 38000 Grenoble, France
| | - Georgios Aprilis
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| | - Yuqing Yin
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| | - Dominique Laniel
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| | - Bjoern Winkler
- Institute für Geowissenschaften, Frankfurt University, Altenhöferallee 1, DE-60438 Frankfurt am Main, Germany
| | - Sergey Krivovichev
- Crystallography Department, Institute of Earth Science, Saint Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
- Kola Science Centre, Russian Academy of Sciences, Fersman str. 14, 184209 Apatity, Russia
| | - Igor Pekov
- Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83, Linkoeping, Sweden
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
4
|
Jiao J, Jin W, Zhang M, Guo Z, Yang Z, Pan S. From β-Na 2 B 6 O 10 to Na 3 AlB 8 O 15 and Na 3 Al 2 B 7 O 15 : Structural Tuning of Anionic-Group Architectures by Substitution of [BO 4 ] by [AlO 4 ] Covalent Tetrahedra. Chemistry 2021; 28:e202103966. [PMID: 34816503 DOI: 10.1002/chem.202103966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/09/2022]
Abstract
Two new sodium aluminum borates, Na3 AlB8 O15 and Na3 Al2 B7 O15 , have been successfully synthesized by the high-temperature solution method. They crystallize in the different space groups, P21 /c and P2/c, respectively. The B-O configurations of β-Na2 B6 O10 , Na3 AlB8 O15 and Na3 Al2 B7 O15 are compared to feature complicated different dimensional open-framework structures caused by the substitution of [BO4 ] by [AlO4 ] covalent tetrahedra. Moreover, the experimental results indicate that Na3 AlB8 O15 and Na3 Al2 B7 O15 have short ultraviolet (UV) cutoff edges (<187 nm). The first-principles calculations show that Na3 AlB8 O15 and Na3 Al2 B7 O15 have moderate birefringence (0.075 and 0.041@1064 nm, respectively).
Collapse
Affiliation(s)
- Jiahao Jiao
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Wenqi Jin
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Min Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhiyong Guo
- Xuchang Quality and Technical Supervision, Inspection and Testing Center, National Quality Supervision and Inspection Center for Ceramic Products of China, West Section of Longxing Road, Dongcheng District, Xuchang, 461000, P.R. China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, P.R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
5
|
Pakhomova A, Fuchs B, Dubrovinsky LS, Dubrovinskaia N, Huppertz H. Polymorphs of the Gadolinite-Type Borates ZrB 2 O 5 and HfB 2 O 5 Under Extreme Pressure. Chemistry 2021; 27:6007-6014. [PMID: 33544397 PMCID: PMC8049040 DOI: 10.1002/chem.202005244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 11/20/2022]
Abstract
Based on the results from previous high‐pressure experiments on the gadolinite‐type mineral datolite, CaBSiO4(OH), the behavior of the isostructural borates β‐HfB2O5 and β‐ZrB2O5 have been studied by synchrotron‐based in situ high‐pressure single‐crystal X‐ray diffraction experiments. On compression to 120 GPa, both borate layer‐structures are preserved. Additionally, at ≈114 GPa, the formation of a second phase can be observed in both compounds. The new high‐pressure modification γ‐ZrB2O5 features a rearrangement of the corner‐sharing BO4 tetrahedra, while still maintaining the four‐ and eight‐membered rings. The new phase γ‐HfB2O5 contains ten‐membered rings including the rare structural motif of edge‐sharing BO4 tetrahedra with exceptionally short B−O and B⋅⋅⋅B distances. For both structures, unusually high coordination numbers are found for the transition metal cations, with ninefold coordinated Hf4+, and tenfold coordinated Zr4+, respectively. These findings remarkably show the potential of cold compression as a low‐energy pathway to discover metastable structures that exhibit new coordinations and structural motifs.
Collapse
Affiliation(s)
- Anna Pakhomova
- Deutsches Elektronen-Synchrotron (DESY), Petra III, Notkestraße 85, 22607, Hamburg, Germany
| | - Birgit Fuchs
- Institut für Allgemeine, Anorganische und Theoretische Chemie, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Leonid S Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Hubert Huppertz
- Institut für Allgemeine, Anorganische und Theoretische Chemie, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|