1
|
Mirzaei MS, Mirzaei S, Espinoza Castro VM, Lawrence C, Hernández Sánchez R. Dual molecular tweezers extending from a nanohoop. Chem Commun (Camb) 2024; 60:14236-14239. [PMID: 39535550 DOI: 10.1039/d4cc03196b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The field of nanohoops is mature enough that synthetic protocols exists to tune their size, composition (incorporation of heteroaromatic building blocks), connectivity (para versus meta linkages), and solubility in different media (hydrophobic versus hydrophilic). Here, we report an additional dimension incorporating the concept of fullerene tweezers into a nanohoop. The resulting hybrid nanohoop is highly strained at 77 kcal mol-1, possesses a quantum yield of 0.12, emits at 584 nm, and displays a positive cooperative binding for C60 (4K2 ≫ K1).
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA.
| | - Saber Mirzaei
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA.
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | - Charlotte Lawrence
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA.
| | - Raúl Hernández Sánchez
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA.
- Rice Advanced Materials Institute, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
2
|
Yang J, Mao LL, Xiao H, Zhang G, Zhang S, Kang L, Lin Z, Tung CH, Wu LZ, Cong H. A Conjugated Phenylene Nanocage with a Guest-Adaptive Deformable Cavity. Angew Chem Int Ed Engl 2024; 63:e202403062. [PMID: 38421901 DOI: 10.1002/anie.202403062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
The highly strained, phenylene-derived organic cages are typically regarded as very rigid entities, yet their deformation potential and supramolecular properties remain underexplored. Herein, we report a pliable conjugated phenylene nanocage by synergistically merging rigid and flexible building blocks. The anisotropic cage molecule contains branched phenylene chains capped by a calix[6]arene moiety, the delicate conformational changes of which endow the cage with a remarkably deformable cavity. When complexing with fullerene guests, the cage showcases excellent guest-adaptivity, with its cavity volume capable of swelling by as much as 85 %.
Collapse
Affiliation(s)
- Jingxuan Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Liang-Liang Mao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Kang
- Functional Crystals Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zheshuai Lin
- Functional Crystals Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Shudo H, Kuwayama M, Segawa Y, Yagi A, Itami K. Half-substituted fluorocycloparaphenylenes with high symmetry: synthesis, properties and derivatization to densely substituted carbon nanorings. Chem Commun (Camb) 2023; 59:13494-13497. [PMID: 37882201 DOI: 10.1039/d3cc04887j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Fluorinated cycloparaphenylenes (FCPPs) have attracted attention as electron-accepting CPPs as well as strained fluoroarenes. Herein, we report the synthesis and properties of novel FCPPs; F16[8]CPP and F12[6]CPP. Furthermore, the derivatization of F16[8]CPP afforded a new carbon nanoring where sixteen pyrrole rings are densely substituted on the CPP framework.
Collapse
Affiliation(s)
- Hiroki Shudo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Motonobu Kuwayama
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yasutomo Segawa
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, 444-8787, Japan
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Sun W, Wang C, Tian C, Li X, Hu X, Liu S. Nanotechnology for brain tumor imaging and therapy based on π-conjugated materials: state-of-the-art advances and prospects. Front Chem 2023; 11:1301496. [PMID: 38025074 PMCID: PMC10663370 DOI: 10.3389/fchem.2023.1301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In contemporary biomedical research, the development of nanotechnology has brought forth numerous possibilities for brain tumor imaging and therapy. Among these, π-conjugated materials have garnered significant attention as a special class of nanomaterials in brain tumor-related studies. With their excellent optical and electronic properties, π-conjugated materials can be tailored in structure and nature to facilitate applications in multimodal imaging, nano-drug delivery, photothermal therapy, and other related fields. This review focuses on presenting the cutting-edge advances and application prospects of π-conjugated materials in brain tumor imaging and therapeutic nanotechnology.
Collapse
Affiliation(s)
- Wenshe Sun
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Congxiao Wang
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Tian
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueda Li
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shifeng Liu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Lingas R, Charistos ND, Muñoz-Castro A. Local and global aromaticity under rotation: analysis of two- and three-dimensional representative carbon nanostructures. Phys Chem Chem Phys 2023; 25:14285-14293. [PMID: 37183443 DOI: 10.1039/d3cp00569k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoscaled 2D and 3D carbon structures with closed curved π-surfaces are of relevance in the development of desirable building units for materials science. Such species are able to sustain local and global aromatic circuits involving isolated regions or the overall structural backbone, respectively. Here we account for local and global aromaticity under rotation of representative two- and three-dimensional species involving para-connected and fused edge-sharing phenyl rings ([8]CPP, [10]CPP, CNB), and C60 fullerene at different charge states. Our results denote that nanoscaled 2D global aromatics mimic the behaviour of the most prototypical aromatic 6π-circuit, given by benzene, where the shielding cone properties vary along the rotation motion. In contrast, 3D spherical aromatics remain almost invariant under rotation, given the distinctive characteristics of such species, differing from 2D global aromatics. Dissection of orbital contributions reveals that π-orbitals are determinants for shifting from non-aromatic to spherical aromatic species. Under rotation, the variation of the anisotropic effect inherent to such nanoscaled structures is accounted for, which is relevant to rationalize variation in NMR signal shifts upon the formation of host-guest aggregates.
Collapse
Affiliation(s)
- Rafael Lingas
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, 54 124, Greece.
| | - Nickolas D Charistos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, 54 124, Greece.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
6
|
Bu A, Zhao Y, Xiao H, Tung C, Wu L, Cong H. A Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209449. [DOI: 10.1002/anie.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Yongye Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
7
|
Yoshigoe Y, Tanji Y, Hata Y, Osakada K, Saito S, Kayahara E, Yamago S, Tsuchido Y, Kawai H. Dynamic Au-C σ-Bonds Leading to an Efficient Synthesis of [ n]Cycloparaphenylenes ( n = 9-15) by Self-Assembly. JACS AU 2022; 2:1857-1868. [PMID: 36032535 PMCID: PMC9400051 DOI: 10.1021/jacsau.2c00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmetalation of the digold(I) complex [Au2Cl2(dcpm)] (1) (dcpm = bis(dicyclohexylphosphino)methane) with oligophenylene diboronic acids gave the triangular macrocyclic complexes [Au2(C6H4) x (dcpm)]3 (x = 3, 4, 5) with yields of over 70%. On the other hand, when the other digold(I) complex [Au2Cl2(dppm)] (1') (dppm = bis(diphenylphosphino)methane) was used, only a negligible amount of the triangular complex was obtained. The control experiments revealed that the dcpm ligand accelerated an intermolecular Au(I)-C σ-bond-exchange reaction and that this high reversibility is the origin of the selective formation of the triangular complexes. Structural analyses and theoretical calculations indicate that the dcpm ligand increases the electrophilicity of the Au atom in the complex, thus facilitating the exchange reaction, although the cyclohexyl group is an electron-donating group. Furthermore, the oxidative chlorination of the macrocyclic gold complexes afforded a series of [n]cycloparaphenylenes (n = 9, 12, 15) in 78-88% isolated yields. The reorganization of two different macrocyclic Au complexes gave a mixture of macrocyclic complexes incorporating different oligophenylene linkers, from which a mixture of [n]cycloparaphenylenes with various numbers of phenylene units was obtained in good yields.
Collapse
Affiliation(s)
- Yusuke Yoshigoe
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yohei Tanji
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusei Hata
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohtaro Osakada
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichi Saito
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Eiichi Kayahara
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shigeru Yamago
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshitaka Tsuchido
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidetoshi Kawai
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
8
|
Bu A, Zhao Y, Xiao H, Tung CH, Wu LZ, Cong H. Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Yongye Zhao
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Hongyan Xiao
- Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Huan Cong
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials No.29 Zhongguancun East Road 100190 Beijing CHINA
| |
Collapse
|
9
|
Shudo H, Kuwayama M, Shimasaki M, Nishihara T, Takeda Y, Mitoma N, Kuwabara T, Yagi A, Segawa Y, Itami K. Perfluorocycloparaphenylenes. Nat Commun 2022; 13:3713. [PMID: 35764634 PMCID: PMC9240036 DOI: 10.1038/s41467-022-31530-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Perfluorinated aromatic compounds, the so-called perfluoroarenes, are widely used in materials science owing to their high electron affinity and characteristic intermolecular interactions. However, methods to synthesize highly strained perfluoroarenes are limited, which greatly limits their structural diversity. Herein, we report the synthesis and isolation of perfluorocycloparaphenylenes (PFCPPs) as a class of ring-shaped perfluoroarenes. Using macrocyclic nickel complexes, we succeeded in synthesizing PF[n]CPPs (n = 10, 12, 14, 16) in one-pot without noble metals. The molecular structures of PF[n]CPPs (n = 10, 12, 14) were determined by X-ray crystallography to confirm their tubular alignment. Photophysical and electrochemical measurements revealed that PF[n]CPPs (n = 10, 12, 14) exhibited wide HOMO–LUMO gaps, high reduction potentials, and strong phosphorescence at low temperature. PFCPPs are not only useful as electron-accepting organic materials but can also be used for accelerating the creation of topologically unique molecular nanocarbon materials. Synthetic methods for the preparation of perfluorinated aromatic compounds are desirable in materials science. Here, the authors synthesize perfluorocycloparaphenylenes, fully fluorinated carbon nanorings, through a nickel-mediated one-pot method.
Collapse
Affiliation(s)
- Hiroki Shudo
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Motonobu Kuwayama
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | | | - Taishi Nishihara
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Nobuhiko Mitoma
- RIKEN Center for Emergent Matter Science, Wako, 351-0198, Japan
| | - Takuya Kuwabara
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | - Akiko Yagi
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | - Yasutomo Segawa
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan. .,Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan. .,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, 444-8787, Japan.
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan. .,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
10
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung C, Wu L, Cong H. A Conjugated Figure‐of‐Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Engineering Research Center for Nanomaterials Henan University Kaifeng 475004 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Wössner JS, Kohn J, Wassy D, Hermann M, Grimme S, Esser B. Increased Antiaromaticity through Pentalene Connection in [ n]Cyclo-1,5-dibenzopentalenes. Org Lett 2022; 24:983-988. [PMID: 35029397 DOI: 10.1021/acs.orglett.1c03900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Conjugated nanohoops incorporating nonalternant hydrocarbons have altered optoelectronic properties compared to [n]cycloparaphenylenes or other purely aromatic hoops. We synthesized [n]cyclo-1,5-dibenzopentalenes (n = 4, 5), in which nonalternant dibenzo[a,e]pentalenes are connected through their pentalene units. This leads to an increase in antiaromatic character and low-lying LUMO energies. Calculations show puckered or entangled conformations of the precursor macrocyclic Pt-complexes. Our study proves dibenzopentalene as a versatile nonalternant building block for conjugated nanohoops with modifiable antiaromaticity and optoelectronic properties.
Collapse
Affiliation(s)
- Jan S Wössner
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry (MCTC), University of Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Daniel Wassy
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Mathias Hermann
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry (MCTC), University of Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
12
|
Macleod-Carey D, Muñoz-Castro A. Enabling dual aromaticity in fused nanobelts: evaluation of the magnetic behavior of fused [10]CPP units. Phys Chem Chem Phys 2022; 24:26701-26707. [DOI: 10.1039/d2cp03667c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cyclo-para-phenylene (CPP) nanobelt structures with curved π-surfaces are of relevance in the development of desirable building units for materials science.
Collapse
Affiliation(s)
- Desmond Macleod-Carey
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
13
|
Sato H, Suizu R, Kato T, Yagi A, Segawa Y, Awaga K, Itami K. N-doped nonalternant aromatic belt via a six-fold annulative double N-arylation. Chem Sci 2022; 13:9947-9951. [PMID: 36128250 PMCID: PMC9430306 DOI: 10.1039/d2sc02647c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 12/22/2022] Open
Abstract
The design and synthesis of nitrogen (N)-doped molecular nanocarbons are of importance since N-doped nanocarbons have received significant attention in materials science. Herein, we report the synthesis and X-ray crystal structure of a nitrogen-inserted nonalternant aromatic belt. The palladium-catalyzed six-fold annulative double N-arylation provided an aromatic belt bearing six nitrogen atoms in one step from cyclo[6]paraphenylene-Z-ethenylene, the precursor of the (6,6)carbon nanobelt. The C3i-symmetric structure of the aromatic belt in the solid state was revealed using X-ray crystallography. The multistep (electro)chemical oxidation behavior of the belt, which was facilitated by the six p-methoxyaniline moieties, was studied, and a stable dication species was successfully identified by X-ray crystallography. The present study not only shows the unique structure and properties of the N-doped nonalternant aromatic belt but also expands the scope of accessibility of synthetically difficult belt molecules by the conventional intramolecular contraction pathway. Nitrogen-doped nonalternant aromatic belt was synthesized via palladium-catalyzed six-fold annulative double N-arylation reaction. The highly symmetric structure and multistep oxidation behavior of the N-belt were confirmed.![]()
Collapse
Affiliation(s)
- Hiroki Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Rie Suizu
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Tomoki Kato
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Akiko Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasutomo Segawa
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, 444-8787, Japan
- JST-ERATO, Nagoya University, Itami Molecular Nanocarbon Project, Chikusa, Nagoya, 464-8602, Japan
| | - Kunio Awaga
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- JST-ERATO, Nagoya University, Itami Molecular Nanocarbon Project, Chikusa, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Japan
| |
Collapse
|
14
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung CH, Wu LZ, Cong H. A Conjugated Figure-of-Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2021; 61:e202113334. [PMID: 34817926 DOI: 10.1002/anie.202113334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Indexed: 11/06/2022]
Abstract
A fully conjugated figure-of-eight nanohoop is presented with facile synthesis. The molecule's lemniscular skeleton features the combination of two strained oligoparaphenylene loops and a flexible cyclooctatetrathiophene core. Its rigid yet guest-adaptive cavities enable the formation of the peanut-like 1:2 host-guest complexes with C60 or C70 , which have been confirmed by X-ray crystallography and characterized in solution. Further computational studies suggest notable geometric variations and non-covalent interactions of the cavities upon binding with different fullerenes, as well as overall conjugation comparable to cycloparaphenylenes.
Collapse
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Yang Y, Juríček M. Fullerene Wires Assembled Inside Carbon Nanohoops. Chempluschem 2021; 87:e202100468. [PMID: 34825520 PMCID: PMC9298906 DOI: 10.1002/cplu.202100468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Indexed: 01/09/2023]
Abstract
Carbon-nanohoop structures featuring one or more round-shaped cavities represent ideal supramolecular hosts for spherical fullerenes, with potential to form host-guest complexes that perform as organic semiconductors in the solid state. Due to the tight complexation between the shape-complementary hosts and guests, carbon nanohoops have the potential to shield fullerenes from water and oxygen, known to perturb the electron-transport process. Many nanohoop receptors have been found to form host-guest complexes with fullerenes. However, there is only a little or no control over the long-range order of encapsulated fullerenes in the solid state. Consequently, the potential of these complexes to perform as organic semiconductors is rarely evaluated. Herein, we present a survey of all known nanohoop-fullerene complexes, for which the solid-state structures were obtained. We discuss and propose instances where the inclusion fullerene guests form discrete supramolecular wires, which might open up possibilities for their use in electronic devices.
Collapse
Affiliation(s)
- Yong Yang
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Michal Juríček
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
16
|
Yang Y, Huangfu S, Sato S, Juríček M. Cycloparaphenylene Double Nanohoop: Structure, Lamellar Packing, and Encapsulation of C 60 in the Solid State. Org Lett 2021; 23:7943-7948. [PMID: 34558903 PMCID: PMC8524662 DOI: 10.1021/acs.orglett.1c02950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new member of the cycloparaphenylene double-nanohoop family was synthesized. Its π-framework features two oval cavities that display different shapes depending on the crystallization conditions. Incorporation of the peropyrene bridge within the nanoring cycles via bay-regions alleviates steric effects and thus allows 1:1 complexation with C60 in the solid state. This nanocarbon adopts a lamellar packing motif, and our results suggest that the structural adjustment of this double nanohoop could enable its use in supramolecular and semiconductive materials.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Shangxiong Huangfu
- Laboratory for High Performance Ceramics, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.,Department of Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Michal Juríček
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
17
|
Hasegawa M, Nojima Y, Mazaki Y. Circularly Polarized Luminescence in Chiral π‐Conjugated Macrocycles. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masashi Hasegawa
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yuki Nojima
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yasuhiro Mazaki
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| |
Collapse
|