1
|
Waluk J. Coupling between tautomerism and radiationless deactivation in porphycenes. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
Quantum yields of fluorescence of porphycenes – porphyrin isomers – can vary by orders of magnitude, even for very similar derivatives, such as meso-dimethyl- vs. meso-tetramethylporphycene. In weakly emitting porphycenes the fluorescence intensity strongly depends on viscosity and can be recovered by placing a molecule in a rigid environment. We postulate that the efficient nonradiative deactivation is due to the quantum effect, delocalization of the inner protons. The delocalization, which increases with the strength of intramolecular hydrogen bonds may induce structural changes that lead to distortion from planarity and, as a result, efficient S0 ← S1 internal conversion. The effect seems to be general, as indicated by good correlation between the quantum yield of fluorescence and the distance between H-bonded nitrogen atoms, the latter being a reliable measure of hydrogen bonding strength. Based on the available photophysical and X-ray data, such correlation was found so far for over 20 differently substituted porphycenes.
Collapse
Affiliation(s)
- Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw , Poland
- Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University , Dewajtis 5, 01-815 Warsaw , Poland
| |
Collapse
|
2
|
Mbakara I, Gajewska A, Listkowski A, Kijak M, Nawara K, Kumpulainen T, Vauthey E, Waluk J. Spectroscopic investigation of photophysics and tautomerism of amino- and nitroporphycenes. Phys Chem Chem Phys 2022; 24:29655-29666. [PMID: 36453100 DOI: 10.1039/d2cp04555a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parent, unsubstituted porphycene and its two derivatives: 2,7,12,17-tetra-n-propylporphycene and 2,7,12,17-tetra-t-butylporphycene were substituted at the meso position with amino and nitro groups. These two families of porphycenes were characterized in detail with respect to their spectral, photophysical, and tautomeric properties. Two trans tautomers of similar energies coexist in the ground electronic state, but only one form dominates in the lowest excited singlet state. Absorption, magnetic circular dichroism (MCD), and emission anisotropy combined with quantum-chemical calculations led to the assignment of S1 and S2 transitions in both tautomers. Compared with the parent porphycene, the S1-S2 energy gap significantly increases; for one tautomeric form, the effect is twice as large as for the other. Both amino- and nitroporphycenes emit single fluorescence; previously reported dual emission of aminoporphycenes is attributed to a degradation product. Introduction of bulky t-butyl groups leads to a huge decrease in fluorescence intensity; this effect, arising from the interaction of the meso substituent with the adjacent t-butyl moiety, is particularly strong in the nitro derivative.
Collapse
Affiliation(s)
- Idaresit Mbakara
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
| | - Agnieszka Gajewska
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
| | - Arkadiusz Listkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland. .,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Michał Kijak
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
| | - Krzysztof Nawara
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland. .,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Tatu Kumpulainen
- Physical Chemistry Department, Sciences II, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Physical Chemistry Department, Sciences II, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland. .,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
3
|
Gawinkowski S, Prakash O. Searching for correlations between geometric and spectroscopic parameters of intramolecular hydrogen bonds in porphyrin-like macrocycles. Phys Chem Chem Phys 2022; 24:22319-22329. [PMID: 36098255 DOI: 10.1039/d2cp01195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical bond lengths and angles are characteristic structural parameters of a molecule. Similarly, the frequencies of the vibrational modes and the NMR chemical shifts are unique "chemical fingerprints" specific to a compound. These are the basic parameters describing newly obtained compounds and enabling their identification. Intramolecular hydrogen bonding significantly influences the physicochemical properties of macrocyclic compounds with a porphyrin-like structure. This work presents the verification for correlations between geometric and spectroscopic parameters related to hydrogen bonds in this type of macrocyclic compounds. In particular, such relationships were investigated for a large group of porphyrin, porphycene, and dibenzotetraaza[14]annulene derivatives and a group of other macrocycles with similar structure. A very strong linear correlation was found only between the vibrational frequencies of the NH groups involved in a hydrogen bond and the length of this bond, which applied to all macrocyclic compounds of this type. Several other relationships were found between spectroscopic (IR, Raman, NMR) and geometric (X-ray) parameters, highlighting differences and similarities between different families of macrocycles. Apart from providing a better understanding of the nature of hydrogen bonds and their characteristics in porphyrin-like macrocyclic compounds, these relationships will facilitate the identification of new macrocycles and the extrapolation of their spectroscopic properties.
Collapse
Affiliation(s)
- Sylwester Gawinkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Om Prakash
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
4
|
Moss A, Nevonen DE, Hu Y, Nesterov VN, Nemykin VN, Wang H. Unsymmetric Pentacene- and Pentacenequinone-Fused Porphyrins: Understanding the Effect of Cross- and Linear-Conjugation. ACS PHYSICAL CHEMISTRY AU 2022; 2:468-481. [PMID: 36855607 PMCID: PMC9955193 DOI: 10.1021/acsphyschemau.2c00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Unsymmetric pentacenequinone-fused (cross-conjugated) and pentacene-fused (linear-conjugated) porphyrins were designed and synthesized. The cross-conjugated (AM 1 -AM 3 ) and linear-conjugated (AM 5 -AM 7 ) porphyrins displayed strikingly different sets of optical and electronic properties, both of which are unusual and nontypical of porphyrins. MCD, DFT, and TDDFT calculations suggest that multiple charge transfer states exist in both π-conjugated systems, which contributes to the complex absorption and MCD spectra of these molecular systems. The general Gouterman's four-orbital model used to explain porphyrin spectroscopy led to contradicting theoretical and experimental data, and is thus not applicable for these molecular systems. The "2 + 4" and "3 + 3" active spaces have been deduced and have proven effective to interpret the absorption and MCD spectra of the pentacenequinone-fused (cross-conjugated) and pentacene-fused (linear-conjugated) porphyrins, respectively. Spectroelectrochemistry of AM 5 -AM 7 revealed broad and intense IR absorptions in the range of 1500-2500 nm, illustrating the exceptional ability of these pentacene-fused systems to accommodate positive charges. A pronounced metal effect was observed for pentacene-fused porphyrins. While pentacene-fused Ni(II) porphyrin (AM6 ) demonstrated an abnormal ability to stabilize pentacene with a half-life of >28.3 days, the half-life of the free base and Zn(II) counterparts were normal, similar to those of pentacene analogues. This work provides important and useful information on guiding new material designs.
Collapse
Affiliation(s)
- Austen Moss
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Dustin E. Nevonen
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yi Hu
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Vladimir N. Nesterov
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Victor N. Nemykin
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada,Department
of Chemistry, University of Tennessee, 552 Buehler Hall, 1420 Circle Dr., Knoxville, Tennessee 37996-1600, United States,
| | - Hong Wang
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States,
| |
Collapse
|
5
|
Lamsabhi AM, Mó O, Yáñez M. Perturbating Intramolecular Hydrogen Bonds through Substituent Effects or Non-Covalent Interactions. Molecules 2021; 26:3556. [PMID: 34200912 PMCID: PMC8230504 DOI: 10.3390/molecules26123556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/02/2022] Open
Abstract
An analysis of the effects induced by F, Cl, and Br-substituents at the α-position of both, the hydroxyl or the amino group for a series of amino-alcohols, HOCH2(CH2)nCH2NH2 (n = 0-5) on the strength and characteristics of their OH···N or NH···O intramolecular hydrogen bonds (IMHBs) was carried out through the use of high-level G4 ab initio calculations. For the parent unsubstituted amino-alcohols, it is found that the strength of the OH···N IMHB goes through a maximum for n = 2, as revealed by the use of appropriate isodesmic reactions, natural bond orbital (NBO) analysis and atoms in molecules (AIM), and non-covalent interaction (NCI) procedures. The corresponding infrared (IR) spectra also reflect the same trends. When the α-position to the hydroxyl group is substituted by halogen atoms, the OH···N IMHB significantly reinforces following the trend H < F < Cl < Br. Conversely, when the substitution takes place at the α-position with respect to the amino group, the result is a weakening of the OH···N IMHB. A totally different scenario is found when the amino-alcohols HOCH2(CH2)nCH2NH2 (n = 0-3) interact with BeF2. Although the presence of the beryllium derivative dramatically increases the strength of the IMHBs, the possibility for the beryllium atom to interact simultaneously with the O and the N atoms of the amino-alcohol leads to the global minimum of the potential energy surface, with the result that the IMHBs are replaced by two beryllium bonds.
Collapse
Affiliation(s)
- Al Mokhtar Lamsabhi
- Departamento de Química (Módulo 13, Facultad de Ciencias) and Institute of Advanced Chemical Sciences (IadChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain;
| | | | - Manuel Yáñez
- Departamento de Química (Módulo 13, Facultad de Ciencias) and Institute of Advanced Chemical Sciences (IadChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|