1
|
Yang PZ, Wang X, Zhang LJ, Tong N, Wang XL. Electrochemically Reconstructed Vanadic Oxide-Doped Cobalt Pyrophosphate as an Electrocatalyst for the Oxygen Evolution Reaction. Inorg Chem 2023; 62:2317-2325. [PMID: 36696163 DOI: 10.1021/acs.inorgchem.2c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
More and more attention has been paid to the development of the efficient electrocatalysts for the oxygen evolution reaction (OER). Herein, a porous vanadic oxide-doped cobalt pyrophosphate electrocatalyst, namely V2O5-Co2P2O7, was exploited by using the electrochemical reconstruction method in the alkaline electrolyte and selecting a cobalt vanadium phosphate Co(H2O)4(VOPO4)2 as a precursor. The reconstructed vanadic oxide-doped cobalt pyrophosphate catalyst V2O5-Co2P2O7 exhibited efficient electrocatalytic activity for the OER in 1.0 M KOH, requiring a low overpotential of 199 mV at 10 mA cm-2, compared to the reported pyrophosphate electrocatalysts. The porous morphology and doping of vanadic oxide after electrochemical reconstruction were beneficial to enhance the electrocatalytic performance for the OER, through improving the surface area to bring in more accessibly active sites and regulating the electronic structures. The results provided a promising strategy to prepare the pyrophosphate electrocatalysts and improve the performance of the OER catalyst.
Collapse
Affiliation(s)
- Pei-Ze Yang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| | - Xiang Wang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| | - Ling-Jie Zhang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| | - Na Tong
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| |
Collapse
|
2
|
Patil AM, Moon S, Seo Y, Roy SB, Jadhav AA, Dubal DP, Kang K, Jun SC. Reconfiguring the Electronic Structure of Heteroatom Doped Carbon Supported Bimetallic Oxide@Metal Sulfide Core-Shell Heterostructure via In Situ Nb Incorporation toward Extrinsic Pseudocapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205491. [PMID: 36446611 DOI: 10.1002/smll.202205491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/15/2022] [Indexed: 06/16/2023]
Abstract
High-energy-density battery-type materials have sparked considerable interest as supercapacitors electrode; however, their sluggish charge kinetics limits utilization of redox-active sites, resulting in poor electrochemical performance. Here, the unique core-shell architecture of metal organic framework derived N-S codoped carbon@Cox Sy micropetals decorated with Nb-incorporated cobalt molybdate nanosheets (Nb-CMO4 @Cx Sy NC) is demonstrated. Coordination bonding across interfaces and π-π stacking interactions between CMO4 @Cx Sy and N and, S-C can prevent volume expansion during cycling. Density functional theory analysis reveals that the excellent interlayer and the interparticle conductivity imparted by Nb doping in heteroatoms synergistically alter the electronic states and offer more accessible species, leading to increased electrical conductivity with lower band gaps. Consequently, the optimized electrode has a high specific capacity of 276.3 mAh g-1 at 1 A g-1 and retains 98.7% of its capacity after 10 000 charge-discharge cycles. A flexible quasi-solid-state SC with a layer-by-layer deposited reduced graphene oxide /Ti3 C2 TX anode achieves a specific energy of 75.5 Wh kg-1 (volumetric energy of 1.58 mWh cm-3 ) at a specific power of 1.875 kWh kg-1 with 96.2% capacity retention over 10 000 charge-discharge cycles.
Collapse
Affiliation(s)
- Amar M Patil
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University Seoul, Seoul, 120-749, South Korea
| | - Sunil Moon
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Youngho Seo
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University Seoul, Seoul, 120-749, South Korea
| | - Sanjib B Roy
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University Seoul, Seoul, 120-749, South Korea
| | - Arti A Jadhav
- Department of Physics, Shivaji University Kolhapur, Vidya Nagar, Kolhapur, Maharashtra, 416004, India
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, Australia
| | - Keonwook Kang
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong Chan Jun
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University Seoul, Seoul, 120-749, South Korea
| |
Collapse
|