1
|
Hand AT, Watson-Sanders BD, Xue ZL. Spectroscopic techniques to probe magnetic anisotropy and spin-phonon coupling in metal complexes. Dalton Trans 2024; 53:4390-4405. [PMID: 38380640 DOI: 10.1039/d3dt03609j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.
Collapse
Affiliation(s)
- Adam T Hand
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
2
|
Vieru V, Gómez-Coca S, Ruiz E, Chibotaru LF. Increasing the Magnetic Blocking Temperature of Single-Molecule Magnets. Angew Chem Int Ed Engl 2024; 63:e202303146. [PMID: 37539652 DOI: 10.1002/anie.202303146] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The synthesis of single-molecule magnets (SMMs), magnetic complexes capable of retaining magnetization blocking for a long time at elevated temperatures, has been a major concern for magnetochemists over the last three decades. In this review, we describe basic SMMs and the different approaches that allow high magnetization-blocking temperatures to be reached. We focus on the basic factors affecting magnetization blocking, magnetic axiality and the height of the blocking barrier, which can be used to group different families of complexes in terms of their SMM efficiency. Finally, we discuss several practical routes for the design of mono- and polynuclear complexes that could be applied in memory devices.
Collapse
Affiliation(s)
- Veacheslav Vieru
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, 6229 EN, Maastricht, The Netherlands
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, 3001, Leuven, Belgium
| |
Collapse
|
3
|
Wang LX, Wu XF, Jin XX, Li JY, Wang BW, Liu JY, Xiang J, Gao S. Slow magnetic relaxation in 8-coordinate Mn(II) compounds. Dalton Trans 2023; 52:14797-14806. [PMID: 37812439 DOI: 10.1039/d3dt02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The design and synthesis of high-spin Mn(II)-based single-molecule magnets (SMMs) have not been well developed to a great extent, as compared with a large number of SMMs based on the other first row transition metal complexes. In light of our success in designing Fe(II), Co(II) and Fe(III)-based SMMs with a high coordination number of 8, it is of great interest to design Mn(II) analogues with such a strategy. In this contribution, four Mn(II) compounds, [MnII(Ln)2](ClO4)2 (1-4) were obtained from reactions of neutral tetradentate ligands, L1-L4, with hydrated MnII(ClO4)2 (L1 = 2,9-bis(carbomethoxy)-1,10-phenanthroline, L2 = 2,9-bis(carbomethoxy)-2,2'-dipyridine, L3 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide, L4 = 6,6'-bis(2-(tert-butyl)-2H-tetrazol-5-yl)-2,2'-bipyridine). Their crystal structures have been determined by X-ray crystallography and it clearly shows that the Mn(II) centers in these compounds have an oversaturated coordination number of 8. Their magnetic properties have been investigated in detail; to our surprise, all of these Mn(II) compounds show interesting slow magnetic relaxation behaviors under an applied direct current field, although they have very small negative D values.
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Jia-Yi Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
- School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Dunstan MA, Giansiracusa MJ, Vonci M, Calvello S, Yu D, Soncini A, Boskovic C, Mole RA. Direct observation of magnetoelastic coupling in a molecular spin qubit: new insights from crystal field neutron scattering data. Chem Sci 2023; 14:3990-4001. [PMID: 37063800 PMCID: PMC10094165 DOI: 10.1039/d2sc05797b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/05/2023] [Indexed: 03/08/2023] Open
Abstract
Single-molecule magnets are promising candidates for data storage and quantum computing applications. A major barrier to their use is rapid magnetic relaxation and quantum decoherence due to thermal vibrations. Here we report a reanalysis of inelastic neutron scattering (INS) data of the candidate qubit Na9[Ho(W5O18)2]·35D2O, wherein we demonstrate for the first time that magnetic relaxation times and mechanisms can be directly observed as crystal field (CF) peak broadening in INS spectra of a lanthanoid molecular system. The magnetoelastic coupling between the lower energy CF states and phonons (lattice vibrations) is determined by the simultaneous measurement of CF excitations and the phonon density of states, encoded within the same INS experiment. This directly results in the determination of relaxation coupling pathways that occur in this molecule. Such information is invaluable for the further advancement of SMMs and to date has only been obtained from techniques performed in external magnetic fields. Additionally, we determine a relaxation rate of quantum-tunnelling of magnetisation that is consistent with previously measured EPR spectroscopy data.
Collapse
Affiliation(s)
- Maja A Dunstan
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
| | | | - Michele Vonci
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
| | - Simone Calvello
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
- Australian Nuclear Science and Technology Organisation Locked Bag 2001 Kirrawee NSW 2232 Australia
| | - Dehong Yu
- Australian Nuclear Science and Technology Organisation Locked Bag 2001 Kirrawee NSW 2232 Australia
| | - Alessandro Soncini
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Colette Boskovic
- School of Chemistry, The University of Melbourne Parkville Vic. 3010 Australia
| | - Richard A Mole
- Australian Nuclear Science and Technology Organisation Locked Bag 2001 Kirrawee NSW 2232 Australia
| |
Collapse
|
5
|
Devkota L, SantaLucia DJ, Wheaton AM, Pienkos AJ, Lindeman SV, Krzystek J, Ozerov M, Berry JF, Telser J, Fiedler AT. Spectroscopic and Magnetic Studies of Co(II) Scorpionate Complexes: Is There a Halide Effect on Magnetic Anisotropy? Inorg Chem 2023; 62:5984-6002. [PMID: 37000941 DOI: 10.1021/acs.inorgchem.2c04468] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The observation of single-molecule magnetism in transition-metal complexes relies on the phenomenon of zero-field splitting (ZFS), which arises from the interplay of spin-orbit coupling (SOC) with ligand-field-induced symmetry lowering. Previous studies have demonstrated that the magnitude of ZFS in complexes with 3d metal ions is sometimes enhanced through coordination with heavy halide ligands (Br and I) that possess large free-atom SOC constants. In this study, we systematically probe this "heavy-atom effect" in high-spin cobalt(II)-halide complexes supported by substituted hydrotris(pyrazol-1-yl)borate ligands (TptBu,Me and TpPh,Me). Two series of complexes were prepared: [CoIIX(TptBu,Me)] (1-X; X = F, Cl, Br, and I) and [CoIIX(TpPh,Me)(HpzPh,Me)] (2-X; X = Cl, Br, and I), where HpzPh,Me is a monodentate pyrazole ligand. Examination with dc magnetometry, high-frequency and -field electron paramagnetic resonance, and far-infrared magnetic spectroscopy yielded axial (D) and rhombic (E) ZFS parameters for each complex. With the exception of 1-F, complexes in the four-coordinate 1-X series exhibit positive D-values between 10 and 13 cm-1, with no dependence on halide size. The five-coordinate 2-X series exhibit large and negative D-values between -60 and -90 cm-1. Interpretation of the magnetic parameters with the aid of ligand-field theory and ab initio calculations elucidated the roles of molecular geometry, ligand-field effects, and metal-ligand covalency in controlling the magnitude of ZFS in cobalt-halide complexes.
Collapse
|
6
|
Boča R, Rajnák C, Titiš J. Possible Violation of the Spin-Hamiltonian Concept in Interpreting the Zero-Field Splitting. J Phys Chem A 2023; 127:3256-3264. [PMID: 36996307 DOI: 10.1021/acs.jpca.3c00599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The majority of experimental data in electron spin resonance and molecular magnetism are interpreted in terms of the spin-Hamiltonian (SH) formalism. However, this is an approximate theory that requires a proper testing. In the older variant, the multielectron terms are used as a basis in which the D-tensor components are evaluated by employing the second-order perturbation theory (PT) for nondegenerate states; here, the spin-orbit interaction expressed via the spin-orbit splitting parameter λ serves for the perturbation. The model space is restricted only to the fictitious spin functions |S, M⟩. In the case of the orbital (quasi) degeneracy of the ground term, the PT tends to diverge and the subtracted D, E, and g parameters are false. In the second variant working in the "complete active space" (CAS), the spin-orbit coupling operator is involved by the variation method resulting in the spin-orbit multiplets (energies and eigenvectors) The multiplets can be evaluated either by applying ab initio CASSCF + NEVPT2 + SOC calculations or by using semiempirical generalized crystal-field theory (with the one-electron SOC operator depending upon ξ). The resulting states can be projected onto the subspace of the spin-only kets in the way that the eigenvalues stay invariant. Such an effective Hamiltonian matrix can be reconstructed using six independent components of the symmetric D-tensor from which the D and E values are obtained by solving linear equations. The eigenvectors of the spin-orbit multiplets in the CAS allow determining the dominating composition of the spin projection─cumulative weights of |±M⟩. These are conceptually different from those generated by the SH alone. It is shown that in some cases, the SH theory works satisfactorily for a series of transition-metal complexes; however, sometimes it fails. The ab initio calculations on the SH parameters are compared with the approximate generalized crystal-field theory conducted at the experimental geometry of the chromophore. In total, 12 metal complexes have been analyzed. One of the criteria that assesses the validity of SH is the projection norm N for spin multiplets (this has not to be far from 1). Another criterion is the gap in the spectrum of the spin-orbit multiplets that separates the hypothetical (fictitious) spin-only manifold from the rest of the states.
Collapse
Affiliation(s)
- Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, Trnava 91701, Slovakia
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, Trnava 91701, Slovakia
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, Trnava 91701, Slovakia
| |
Collapse
|
7
|
Gupta S, Nielsen HH, Thiel AM, Klahn EA, Feng E, Cao HB, Hansen TC, Lelièvre-Berna E, Gukasov A, Kibalin I, Dechert S, Demeshko S, Overgaard J, Meyer F. Multi-Technique Experimental Benchmarking of the Local Magnetic Anisotropy of a Cobalt(II) Single-Ion Magnet. JACS AU 2023; 3:429-440. [PMID: 36873706 PMCID: PMC9975825 DOI: 10.1021/jacsau.2c00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A comprehensive understanding of the ligand field and its influence on the degeneracy and population of d-orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic CoII SIM, [L2Co](TBA)2 (L is an N,N'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal U eff > 300 K and magnetic blocking up to 3.5 K, and the property is retained in a frozen solution. Low-temperature single-crystal synchrotron X-ray diffraction used to determine the experimental electron density gave access to Co d-orbital populations and a derived U eff, 261 cm-1, when the coupling between the d x 2 - y 2 and dxy orbitals is taken into account, in very good agreement with ab initio calculations and superconducting quantum interference device results. Powder and single-crystal polarized neutron diffraction (PNPD, PND) have been used to quantify the magnetic anisotropy via the atomic susceptibility tensor, revealing that the easy axis of magnetization is pointing along the N-Co-N' bisectors of the N,N'-chelating ligands (3.4° offset), close to the molecular axis, in good agreement with complete active space self-consistent field/N-electron valence perturbation theory to second order ab initio calculations. This study provides benchmarking for two methods, PNPD and single-crystal PND, on the same 3d SIM, and key benchmarking for current theoretical methods to determine local magnetic anisotropy parameters.
Collapse
Affiliation(s)
- Sandeep
K. Gupta
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Hannah H. Nielsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Andreas M. Thiel
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Emil A. Klahn
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Erxi Feng
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee37831, United States
| | - Huibo B. Cao
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee37831, United States
| | - Thomas C. Hansen
- Institut
Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042Grenoble, France
| | | | - Arsen Gukasov
- Laboratoire
Léon Brillouin (LLB), CEA CE de Saclay, Gif sur Yvette91191, France
| | - Iurii Kibalin
- Laboratoire
Léon Brillouin (LLB), CEA CE de Saclay, Gif sur Yvette91191, France
| | - Sebastian Dechert
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Serhiy Demeshko
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Jacob Overgaard
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Franc Meyer
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
- Universität
Göttingen, International Center for Advanced Studies of Energy
Conversion (ICASEC), Tammannstraße 6, D-37077Göttingen, Germany
| |
Collapse
|
8
|
Ferentinos E, Tzeli D, Sottini S, Groenen EJJ, Ozerov M, Poneti G, Kaniewska-Laskowska K, Krzystek J, Kyritsis P. Magnetic anisotropy and structural flexibility in the field-induced single ion magnets [Co{(OPPh 2)(EPPh 2)N} 2], E = S, Se, explored by experimental and computational methods. Dalton Trans 2023; 52:2036-2050. [PMID: 36692040 PMCID: PMC9926333 DOI: 10.1039/d2dt03335f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
During the last few years, a large number of mononuclear Co(II) complexes of various coordination geometries have been explored as potential single ion magnets (SIMs). In the work presented herein, the Co(II) S = 3/2 tetrahedral [Co{(OPPh2)(EPPh2)N}2], E = S, Se, complexes (abbreviated as CoO2E2), bearing chalcogenated mixed donor-atom imidodiphosphinato ligands, were studied by both experimental and computational techniques. Specifically, direct current (DC) magnetometry provided estimations of their zero-field splitting (zfs) axial (D) and rhombic (E) parameter values, which were more accurately determined by a combination of far-infrared magnetic spectroscopy and high-frequency and -field EPR spectroscopy studies. The latter combination of techniques was also implemented for the S = 3/2 tetrahedral [Co{(EPiPr2)2N}2], E = S, Se, complexes, confirming the previously determined magnitude of their zfs parameters. For both pairs of complexes (E = S, Se), it is concluded that the identity of the E donor atom does not significantly affect their zfs parameters. High-resolution multifrequency EPR studies of CoO2E2 provided evidence of multiple conformations, which are more clearly observed for CoO2Se2, in agreement with the structural disorder previously established for this complex by X-ray crystallography. The CoO2E2 complexes were shown to be field-induced SIMs, i.e., they exhibit slow relaxation of magnetization in the presence of an external DC magnetic field. Advanced quantum-chemical calculations on CoO2E2 provided additional insight into their electronic and structural properties.
Collapse
Affiliation(s)
- Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece.
| | - Demeter Tzeli
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece
| | - Silvia Sottini
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Edgar J J Groenen
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA.
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.
| | - Kinga Kaniewska-Laskowska
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA.
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece.
| |
Collapse
|
9
|
Moseley DH, Liu Z, Bone AN, Stavretis SE, Singh SK, Atanasov M, Lu Z, Ozerov M, Thirunavukkuarasu K, Cheng Y, Daemen LL, Lubert-Perquel D, Smirnov D, Neese F, Ramirez-Cuesta AJ, Hill S, Dunbar KR, Xue ZL. Comprehensive Studies of Magnetic Transitions and Spin-Phonon Couplings in the Tetrahedral Cobalt Complex Co(AsPh 3) 2I 2. Inorg Chem 2022; 61:17123-17136. [PMID: 36264658 DOI: 10.1021/acs.inorgchem.2c02604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combination of inelastic neutron scattering (INS), far-IR magneto-spectroscopy (FIRMS), and Raman magneto-spectroscopy (RaMS) has been used to comprehensively probe magnetic excitations in Co(AsPh3)2I2 (1), a reported single-molecule magnet (SMM). With applied field, the magnetic zero-field splitting (ZFS) peak (2D') shifts to higher energies in each spectroscopy. INS placed the ZFS peak at 54 cm-1, as revealed by both variable-temperature (VT) and variable-magnetic-field data, giving results that agree well with those from both far-IR and Raman studies. Both FIRMS and RaMS also reveal the presence of multiple spin-phonon couplings as avoided crossings with neighboring phonons. Here, phonons refer to both intramolecular and lattice vibrations. The results constitute a rare case in which the spin-phonon couplings are observed with both Raman-active (g modes) and far-IR-active phonons (u modes; space group P21/c, no. 14, Z = 4 for 1). These couplings are fit using a simple avoided crossing model with coupling constants of ca. 1-2 cm-1. The combined spectroscopies accurately determine the magnetic excited level and the interaction of the magnetic excitation with phonon modes. Density functional theory (DFT) phonon calculations compare well with INS, allowing for the assignment of the modes and their symmetries. Electronic calculations elucidate the nature of ZFS in the complex. Features of different techniques to determine ZFS and other spin-Hamiltonian parameters in transition-metal complexes are summarized.
Collapse
Affiliation(s)
- Duncan H Moseley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Zhiming Liu
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Alexandria N Bone
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Shelby E Stavretis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502285Sangareddy, Telangana, India
| | - Mihail Atanasov
- Max Planck Institute for Coal Research, Kaiser-Wilhelm-Platz 1, D-45470Mülheim an der Ruhr, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113Sofia, Bulgaria
| | - Zhengguang Lu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States
| | | | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Daphné Lubert-Perquel
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States
| | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States
| | - Frank Neese
- Max Planck Institute for Coal Research, Kaiser-Wilhelm-Platz 1, D-45470Mülheim an der Ruhr, Germany
| | - A J Ramirez-Cuesta
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida32306, United States
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas77843, United States
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
10
|
Yureva EA, Korchagin DV, Anichkin AA, Shilov GV, Babeshkin KA, Efimov NN, Palii AV, Aldoshin SM. Evidence for zero-field slow magnetic relaxation in a Co(II) complex with a pseudo-tetrahedral N 2I 2 environment. Dalton Trans 2022; 51:11916-11921. [PMID: 35876183 DOI: 10.1039/d2dt01336c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we report on the synthesis, structure and magnetic properties of a four-coordinate mononuclear Co(II) diiodide complex with the 3,5-dimethylpyrazole ligand. A distorted tetrahedral local coordination environment around the central cobalt ion is formed by the two nitrogen atoms of two monodentate pyrazole ligands and by iodide ions. Direct current (dc) magnetic measurements in combination with ab initio SA-CASSCF/NEVPT2 quantum-chemical calculations revealed a strong easy-axis-type magnetic anisotropy with a record value Dexp = -30.58(3) cm-1 of the axial zero field splitting parameter for pseudo-tetrahedral Co(II)-based CoL2Hal2 complexes. Moreover, it is the only complex in this series demonstrating the slow relaxation of magnetization at zero dc field. The Orbach process is shown to be the dominant mechanism of magnetic relaxations in the high temperature range, while the quantum tunneling of magnetization produces the leading contribution to the overall relaxation at temperatures below 4 K.
Collapse
Affiliation(s)
- E A Yureva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov prosp., 142432 Chernogolovka, Moscow Region, Russia.
| | - D V Korchagin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov prosp., 142432 Chernogolovka, Moscow Region, Russia.
| | - A A Anichkin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov prosp., 142432 Chernogolovka, Moscow Region, Russia. .,Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, 1-3, Leninskiye Gory, 119991 Moscow, Russia
| | - G V Shilov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov prosp., 142432 Chernogolovka, Moscow Region, Russia.
| | - K A Babeshkin
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31, Leninsky prosp., 119991 Moscow, Russia
| | - N N Efimov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31, Leninsky prosp., 119991 Moscow, Russia
| | - A V Palii
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov prosp., 142432 Chernogolovka, Moscow Region, Russia.
| | - S M Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1, Acad. Semenov prosp., 142432 Chernogolovka, Moscow Region, Russia.
| |
Collapse
|
11
|
Lv W, Cui HH, Chen L, Zhang YQ, Chen XT, Wang Z, Ouyang ZW, Xue ZL. Magnetic anisotropy of two tetrahedral Co(II)-halide complexes with triphenylphosphine ligands. Dalton Trans 2022; 51:7530-7538. [PMID: 35506535 DOI: 10.1039/d2dt00121g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, the choice of ligand and geometric control of mononuclear complexes, which can affect the relaxation pathways and blocking temperature, have received wide attention in the field of single-ion magnets (SIMs). To find out the influence of the coordination environment on SIMs, two four-coordinate mononuclear Co(II) complexes [NEt4][Co(PPh3)X3] (X = Cl-, 1; Br-, 2) have been synthesized and studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes are in a cubic space group Pa3̄ (No. 205), containing a slightly distorted tetrahedral moiety with crystallographically imposed C3v symmetry through the [Co(PPh3)X3]- anion. The direct-current (dc) magnetic data and HF-EPR spectroscopy indicated the anisotropic S = 3/2 spin ground states of the Co(II) ions with the easy-plane anisotropy for 1 and 2. Ab initio calculations were performed to confirm the positive magnetic anisotropies of 1 and 2. Frequency- and temperature-dependent alternating-current (ac) magnetic susceptibility measurements revealed slow magnetic relaxation for 1 and 2 at an applied dc field. Finally, the magnetic properties of 1 and 2 were compared to those of other Co(II) complexes with a [CoAB3] moiety.
Collapse
Affiliation(s)
- Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
12
|
Taylor WV, Cashman BK, Xie ZL, Ngo KK, Rose MJ. Synthesis and Magnetic Properties of Antimony-Ligated Co(II) Complexes: Stibines versus Phosphines. Inorg Chem 2022; 61:6733-6741. [PMID: 35466675 DOI: 10.1021/acs.inorgchem.1c03366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we test the hypothesis that neutral, heavy-atom stibine donors can increase the extent of spin-orbit coupling on light, 3d transition metal. To this end, we developed a novel synthetic route toward coordinating a paramagnetic 3d metal ion─cobalt(II)─with neutral stibine ligands. Such complexes have not been reported in the literature due to the weak σ donor strength of stibines and the hard-soft mismatch between a 3d metal and a 5p ligand─which herein has been overcome using alkylated Sb donors. Magnetometry of [(SbiPr2Ph)2Co(I)2] (1) reveals that the stibine complex 1 exhibits a higher magnitude D value (D = |24.96| cm-1) than the spectroscopically derived value for the corresponding phosphine complex 3 (D = -13.13 cm-1), indicative of large zero-field splitting. CASSCF/NEVPT2 calculations corroborate the experimental D values for 1 and 3, predicting D = -31.9 and -8.9 cm-1, respectively. A re-examination of magnetic parameters across the entire series [(ER3)2Co(X)2] (E = P → Sb; X = Cl → I) reveals that (i) increasingly heavy pnictogens lead to an increased X-Co-X bond angle, which is correlated with larger magnitude D values, and (ii) for a given X-Co-X bond angle, the D value is always higher in the presence of a heavy pnictogen as compared with a heavy halide. Ab initio ligand field theory calculations for 1 (stibine complex) and 3 (phosphine complex) reveal no substantial differences in spin-orbit coupling (ζ = 479.2, 480.2 cm-1) or Racah parameter (B = 947.5, 943.9 cm-1), an indicator of covalency. Thus, some "heavy atom effect" on the D value beyond geometric perturbation is operative, but its precise mechanism(s) of action remains obscure.
Collapse
Affiliation(s)
- William V Taylor
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78757, United States
| | - Brenna K Cashman
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78757, United States
| | - Zhu-Lin Xie
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78757, United States
| | - Karen K Ngo
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78757, United States
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78757, United States
| |
Collapse
|
13
|
Blackaby WJM, Harriman KLM, Greer SM, Folli A, Hill S, Krewald V, Mahon MF, Murphy DM, Murugesu M, Richards E, Suturina E, Whittlesey MK. Extreme g-Tensor Anisotropy and Its Insensitivity to Structural Distortions in a Family of Linear Two-Coordinate Ni(I) Bis-N-heterocyclic Carbene Complexes. Inorg Chem 2022; 61:1308-1315. [PMID: 35005902 DOI: 10.1021/acs.inorgchem.1c02413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new series of homoleptic Ni(I) bis-N-heterocyclic carbene complexes with a range of torsion angles between the two ligands from 68° to 90°. Electron paramagnetic resonance measurements revealed a strongly anisotropic g-tensor in all complexes with a small variation in g∥ ∼ 5.7-5.9 and g⊥ ∼ 0.6. The energy of the first excited state identified by variable-field far-infrared magnetic spectroscopy and SOC-CASSCF/NEVPT2 calculations is in the range 270-650 cm-1. Magnetic relaxation measured by alternating current susceptibility up to 10 K is dominated by Raman and direct processes. Ab initio ligand-field analysis reveals that a torsion angle of <90° causes the splitting between doubly occupied dxz and dyz orbitals, which has little effect on the magnetic properties, while the temperature dependence of the magnetic relaxation appears to have no correlation with the torsion angle.
Collapse
Affiliation(s)
| | - Katie L M Harriman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Samuel M Greer
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Chemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Andrea Folli
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Vera Krewald
- Theoretical Chemistry, TU Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Damien M Murphy
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Emma Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Elizaveta Suturina
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | |
Collapse
|
14
|
Chakarawet K, Atanasov M, Ellis JE, Lukens WW, Young VG, Chatterjee R, Neese F, Long JR. Effect of Spin-Orbit Coupling on Phonon-Mediated Magnetic Relaxation in a Series of Zero-Valent Vanadium, Niobium, and Tantalum Isocyanide Complexes. Inorg Chem 2021; 60:18553-18560. [PMID: 34807605 DOI: 10.1021/acs.inorgchem.1c03173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spin-vibronic coupling leads to spin relaxation in paramagnetic molecules, and an understanding of factors that contribute to this phenomenon is essential for designing next-generation spintronics technology, including single-molecule magnets and spin-based qubits, wherein long-lifetime magnetic ground states are desired. We report spectroscopic and magnetic characterization of the isoelectronic and isostructural series of homoleptic zerovalent transition metal triad M(CNDipp)6 (M = V, Nb, Ta; CNDipp = 2,6-diisopropylphenyl isocyanide) and show experimentally the significant increase in spin relaxation rate upon going from V to Nb to Ta. Correlated electronic calculations and first principle spin-phonon computations support the role of spin-orbit coupling in modulating spin-phonon relaxation. Our results provide experimental evidence that increasing magnetic anisotropy through spin-orbit coupling interactions leads to increased spin-vibronic relaxation, which is detrimental to long spin lifetime in paramagnetic molecules.
Collapse
Affiliation(s)
- Khetpakorn Chakarawet
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Mihail Atanasov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, Akad. G. Bontchev Street, Bl.11, 1113 Sofia, Bulgaria.,Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - John E Ellis
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Victor G Young
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Frank Neese
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Zolnhofer EM, Opalade AA, Jackson TA, Heinemann FW, Meyer K, Krzystek J, Ozarowski A, Telser J. Electronic Structure and Magnetic Properties of a Low-Spin Cr II Complex: trans-[CrCl 2(dmpe) 2] (dmpe = 1,2-Bis(dimethylphosphino)ethane). Inorg Chem 2021; 60:17865-17877. [PMID: 34719919 DOI: 10.1021/acs.inorgchem.1c02471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Octahedral coordination complexes of the general formula trans-[MX2(R2ECH2CH2ER2)2] (MII = Ti, V, Cr, Mn; E = N, P; R = alkyl, aryl) are a cornerstone of both coordination and organometallic chemistry, and many of these complexes are known to have unique electronic structures that have been incompletely examined. The trans-[CrCl2(dmpe)2] complex (dmpe = Me2PCH2CH2PMe2), originally reported by Girolami and co-workers in 1985, is a rare example of a six-coordinate d4 system with an S = 1 (spin triplet) ground state, as opposed to the high-spin (S = 2, spin quintet) state. The ground-state properties of S = 1 systems are challenging to study using conventional spectroscopic methods, and consequently, the electronic structure of trans-[CrCl2(dmpe)2] has remained largely unexplored. In this present work, we have employed high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy to characterize the ground-state electronic structure of trans-[CrCl2(dmpe)2]. This analysis yielded a complete set of spin Hamiltonian parameters for this S = 1 complex: D = +7.39(1) cm-1, E = +0.093(1) (E/D = 0.012), and g = [1.999(5), 2.00(1), 2.00(1)]. To develop a detailed electronic structure description for trans-[CrCl2(dmpe)2], we employed both classical ligand-field theory and quantum chemical theory (QCT) calculations, which considered all quintet, triplet, and singlet ligand-field states. While the high density of states suggests an unexpectedly complex electronic structure for this "simple" coordination complex, both the ligand-field and QCT methods were able to reproduce the experimental spin Hamiltonian parameters quite nicely. The QCT computations were also used as a basis for assigning the electronic absorption spectrum of trans-[CrCl2(dmpe)2] in toluene.
Collapse
Affiliation(s)
- Eva M Zolnhofer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Adedamola A Opalade
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|