1
|
Naranjo A, Garrido M, Martín Sabanés N, Pérez EM. Scope and Limitations of Using Microemulsions for the Covalent Patterning of Graphene. Chemistry 2024; 30:e202303809. [PMID: 38465520 DOI: 10.1002/chem.202303809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Patterning of graphene (functionalizing some areas while leaving others intact) is challenging, as all the C atoms in the basal plane are identical, but it is also desirable for a variety of applications, like opening a bandgap in the electronic structure of graphene. Several methods have been reported to pattern graphene, but most of them are very technologically intensive. Recently, we reported the use of microemulsions as templates to pattern graphene at the μm scale. This method is very simple and in principle tunable, as emulsions of different droplet size and composition can be prepared easily. Here, we explore in detail the scope of this methodology by applying it to all the combinations of four different emulsions and three different organic reagents, and characterizing the resulting substrates exhaustively through Raman, SEM and AFM. We find that the method is general, works better when the reactive species are outside the micelles, and requires reactive species that involve short reaction times.
Collapse
|
2
|
Fickert M, Martinez-Haya R, Ruiz AM, Baldoví JJ, Abellán G. Exploring the effect of the covalent functionalization in graphene-antimonene heterostructures. RSC Adv 2024; 14:13758-13768. [PMID: 38681835 PMCID: PMC11046379 DOI: 10.1039/d4ra01029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024] Open
Abstract
The growing field of two-dimensional (2D) materials has recently witnessed the emergence of heterostructures, however those combining monoelemental layered materials remain relatively unexplored. In this study, we present the chemical fabrication and characterization of a heterostructure formed by graphene and hexagonal antimonene. The interaction between these 2D materials is thoroughly examined through Raman spectroscopy and first-principles calculations, revealing that this can be considered as a van der Waals heterostructure. Furthermore, we have explored the influence of the antimonene 2D material on the reactivity of graphene by studying the laser-induced covalent functionalization of the graphene surface. Our findings indicate distinct degrees of functionalization based on the underlying material, SiO2 being more reactive than antimonene, opening the door for the development of controlled patterning in devices based on these heterostructures. This covalent functionalization implies a high control over the chemical information that can be stored but also removed on graphene surfaces, and its use as a patterned heterostructure based on antimonene and graphene. This research provides valuable insights into the antimonene-graphene interactions and their impact on the chemical reactivity during graphene covalent functionalization.
Collapse
Affiliation(s)
- M Fickert
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Fürth 90762 Germany
| | - R Martinez-Haya
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Valencia 46980 Spain
| | - A M Ruiz
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Valencia 46980 Spain
| | - J J Baldoví
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Valencia 46980 Spain
| | - G Abellán
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Valencia 46980 Spain
| |
Collapse
|
3
|
Wetzl C, Silvestri A, Garrido M, Hou HL, Criado A, Prato M. The Covalent Functionalization of Surface-Supported Graphene: An Update. Angew Chem Int Ed Engl 2023; 62:e202212857. [PMID: 36279191 DOI: 10.1002/anie.202212857] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 12/12/2022]
Abstract
In the last decade, the use of graphene supported on solid surfaces has broadened its scope and applications, and graphene has acquire a promising role as a major component of high-performance electronic devices. In this context, the chemical modification of graphene has become essential. In particular, covalent modification offers key benefits, including controllability, stability, and the facility to be integrated into manufacturing operations. In this Review, we critically comment on the latest advances in the covalent modification of supported graphene on substrates. We analyze the different chemical modifications with special attention to radical reactions. In this context, we review the latest achievements in reactivity control, tailoring electronic properties, and introducing active functionalities. Finally, we extended our analysis to other emerging 2D materials supported on surfaces, such as transition metal dichalcogenides, transition metal oxides, and elemental analogs of graphene.
Collapse
Affiliation(s)
- Cecilia Wetzl
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain.,University of the Basque Country UPV-EHU, 20018, Donostia-San Sebastián, Spain
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain
| | - Marina Garrido
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Hui-Lei Hou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain
| | - Alejandro Criado
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Rúa as Carballeiras, 15071, A Coruña, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain.,Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
4
|
Naranjo A, Martín Sabanés N, Vázquez Sulleiro M, Pérez EM. Microemulsions for the covalent patterning of graphene. Chem Commun (Camb) 2022; 58:7813-7816. [PMID: 35736674 DOI: 10.1039/d2cc01858f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show that microemulsions can be used as a simple, cheap and scalable template for the covalent patterning of graphene.
Collapse
Affiliation(s)
- Alicia Naranjo
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
| | - Natalia Martín Sabanés
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
| | | | - Emilio M Pérez
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Wei T, Hauke F, Hirsch A. Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104060. [PMID: 34569112 PMCID: PMC11468719 DOI: 10.1002/adma.202104060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Indexed: 05/26/2023]
Abstract
The realization that nanostructured graphene featuring nanoscale width can confine electrons to open its bandgap has aroused scientists' attention to the regulation of graphene structures, where the concept of graphene patterns emerged. Exploring various effective methods for creating graphene patterns has led to the birth of a new field termed graphene patterning, which has evolved into the most vigorous and intriguing branch of graphene research during the past decade. The efforts in this field have resulted in the development of numerous strategies to structure graphene, affording a variety of graphene patterns with tailored shapes and sizes. The established patterning approaches combined with graphene chemistry yields a novel chemical patterning route via molecular engineering, which opens up a new era in graphene research. In this review, the currently developed graphene patterning strategies is systematically outlined, with emphasis on the chemical patterning. In addition to introducing the basic concepts and the important progress of traditional methods, which are generally categorized into top-down, bottom-up technologies, an exhaustive review of established protocols for emerging chemical patterning is presented. At the end, an outlook for future development and challenges is proposed.
Collapse
Affiliation(s)
- Tao Wei
- Department of Chemistry and Pharmacy and Joint Institute of Advance Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐NürnbergNikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| | - Frank Hauke
- Department of Chemistry and Pharmacy and Joint Institute of Advance Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐NürnbergNikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy and Joint Institute of Advance Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐NürnbergNikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| |
Collapse
|
6
|
Bao L, Zhao B, Assebban M, Halik M, Hauke F, Hirsch A. Covalent 2D Patterning, Local Electronic Structure and Polarization Switching of Graphene at the Nanometer Level. Chemistry 2021; 27:8709-8713. [PMID: 33769649 PMCID: PMC8252423 DOI: 10.1002/chem.202100941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 11/23/2022]
Abstract
A very facile and efficient protocol for the covalent patterning and properties tuning of graphene is reported. Highly reactive fluorine radicals were added to confined regions of graphene directed by laser writing on graphene coated with 1-fluoro-3,3-dimethylbenziodoxole. This process allows for the realization of exquisite patterns on graphene with resolutions down to 200 nm. The degree of functionalization, ranging from the unfunctionalized graphene to extremely high functionalized graphene, can be precisely tuned by controlling the laser irradiation time. Subsequent substitution of the initially patterned fluorine atoms afforded an unprecedented graphene nanostructure bearing thiophene groups. This substitution led to a complete switch of both the electronic structure and the polarization within the patterned graphene regions. This approach paves the way towards the precise modulation of the structure and properties of nanostructured graphene.
Collapse
Affiliation(s)
- Lipiao Bao
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Baolin Zhao
- Organic Materials and Devices (OMD), Institute of Polymer Material, Interdisziplinären Zentrums für Nanostrukturierte Filme (IZNF), Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Mhamed Assebban
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Marcus Halik
- Organic Materials and Devices (OMD), Institute of Polymer Material, Interdisziplinären Zentrums für Nanostrukturierte Filme (IZNF), Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Frank Hauke
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| |
Collapse
|