1
|
Zhu F, Li S, Bu X, Ge J, Song WL, Wang M, Jiao S. Sustainable Processing of Ultralow-Cost Petroleum Cokes Into Ultrastable Self-Doped Fe 3C@CNT Catalysts for High-Efficiency HER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407502. [PMID: 39468902 DOI: 10.1002/smll.202407502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Petroleum cokes are largely used as low-cost anodes in aluminum industries and general fuels in cement industries, where large amounts of CO2 are generated. To reduce CO2 release, it is challenging to develop green strategies for processing abundant petroleum cokes into high-value products, because there are abundant hetero-atoms in petroleum cokes. To overcome such issues, a sustainable electrochemical approach is proposed to convert ultralow-cost high sulfur petroleum coke and iron powders into high-efficiency catalysts for hydrogen evolution reaction (HER). During molten-salt electrolysis, raw petroleum cokes are converted into CNTs via heteroatom removal and the catalytic effect of Fe, forming Fe3C nanoparticles on the sulfur and nitrogen co-dopped carbon nanotubes (Fe3C@S, N-CNTs). The electrochemical reaction analysis using the continuum model suggested that the rate-determining step referred to the slow transport of mobile ions inside the porous cathode. Because the self-doped S and N atoms massively alleviated the energy barrier for H* absorption and H2 desorption (i.e., promoting HER kinetics), the as-prepared Fe3C@S, N-CNTs exhibited low overpotentials at 10 mA cm-2 in acidic (96 mV) and alkaline (106 mV) solutions with ultralong-term duration (200 h). This study offers a sustainable approach to convert ultralow-cost petroleum cokes into ultrastable catalysts for high-efficiency HER.
Collapse
Affiliation(s)
- Fei Zhu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
| | - Shijie Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xudong Bu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jianbang Ge
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
2
|
Li B, Xiao J, Zhu X, Wu Z, Zhang X, Han Y, Niu J, Wang F. Enabling high-performance lithium iron phosphate cathodes through an interconnected carbon network for practical and high-energy lithium-ion batteries. J Colloid Interface Sci 2024; 653:942-948. [PMID: 37774657 DOI: 10.1016/j.jcis.2023.09.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
The olivine lithium iron phosphate (LFP) cathode has gained significant utilization in commercial lithium-ion batteries (LIBs) with graphite anodes. However, the actual capacity and rate performance of LFP still require further enhancement when combined with high-capacity anodes, such as silicon (Si) anodes, to achieve high-energy LIBs. In this study, we introduce a gelatin-derived carbon network into a nanosized LFP cathode without the need for additional binding and conductive agents, employing a simple and cost-effective method. The resulting cathode exhibits an extremely high LFP content (∼92.3 wt%), enabling it to show a high real capacity of 159.7 mAh/g at 0.2 C in half cells. Additionally, the interconnected carbon network effectively facilitates electron and Li+ transport, providing rapid pathways within the LFP nanoparticles. Consequently, the cathode exhibits superior rate capability (107.3 mAh/g at 10 C) and good cycling performance (with a capacity retention of ∼ 80 % after 500 cycles). To further assess its practical viability, the LFP cathode is assembled into a full cell utilizing a Si-based anode with a N/P ratio of 1.1. The resulting full cell delivers a significantly high energy density of 419.7 Wh kg-1, coupled with prolonged cycle life, highlighting its promising prospects for practical applications.
Collapse
Affiliation(s)
- Binke Li
- Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, Beijing 101100, PR China; State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianqi Xiao
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaoyi Zhu
- Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, Beijing 101100, PR China
| | - Zhuoyan Wu
- Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, Beijing 101100, PR China
| | - Xushan Zhang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Han
- Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, Beijing 101100, PR China.
| | - Jin Niu
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
3
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
4
|
Ayub J, Saeed MU, Hussain N, Zulfiqar I, Mehmood T, Iqbal HMN, Bilal M. Designing robust nano-biocatalysts using nanomaterials as multifunctional carriers - expanding the application scope of bio-enzymes. Top Catal 2023; 66:625-648. [DOI: 10.1007/s11244-022-01657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
|
5
|
Gong Y, Xu Y, Que Y, Xu X, Tang Y, Ye D, Zhao H, Zhang J. Prussian blue analogues derived electrocatalyst with multicatalytic centers for boosting oxygen reduction reaction in the wide pH range. J Colloid Interface Sci 2022; 612:639-649. [PMID: 35026569 DOI: 10.1016/j.jcis.2021.12.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
Abstract
Due to the complex of oxygen reduction reaction (ORR), designing catalysts with multicatalytic centers is considered as a promising way for boosting the ORR. Herein, a multicatalytic centers electrocatalyst Fe3C/Mn3O4 encased by N-doped graphitic layers (FeMn PDA-900) is synthesized using iron manganese Prussian blue analogues and dopamine as the precursor. It exhibits a half-wave potential (E1/2) of 0.86 V for ORR and yields of H2O2 lower than 5% in 0.1 M KOH. Moreover, the prepared catalyst has also shown high catalytic ORR performance in both acidic and neutral electrolyte solutions, which exhibits the potential application in both the proton exchange membrane fuel cell and the microbial electrolysis cell. It is found that the good performance can be well explained by proton-coupled electron transfer mechanism due to the multicatalytic centers from Fe-Nx, Fe3C and Mn3O4 for providing enough active sites at the same time and the N-doped graphitic layers as a bridge for facilitating the electron transfer between the interfaces of Fe3C/Mn3O4 nanoparticles, which paves the way for protons and electrons transfer simultaneously and rapidly, and thus lowing the energy barrier and facilitating the ORR process. Therefore, FeMn PDA-900 is a promising candidate to replace precious metal-based ORR electrocatalysts at the whole pH range.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Yuan Xu
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Yipeng Que
- Chilwee Group Co., Ltd, Huzhou 313100, PR China
| | - Xueliang Xu
- Chilwee Group Co., Ltd, Huzhou 313100, PR China
| | - Ya Tang
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Daixin Ye
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China.
| | - Hongbin Zhao
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China.
| | - Jiujun Zhang
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| |
Collapse
|
6
|
Yang J, Chen F, Zhu H. Efficient Trimetallic Metal‐Organic‐Framework Derived Cu/Fe
3
C/N−C Electrocatalysts for Oxygen Reduction. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jin‐Meng Yang
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Feng Chen
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Hai‐Bin Zhu
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| |
Collapse
|