1
|
Han G, Ren W, Zhang S, Zuo Z, He W. Application of chiral recyclable catalysts in asymmetric catalysis. RSC Adv 2024; 14:16520-16545. [PMID: 38774608 PMCID: PMC11106706 DOI: 10.1039/d4ra01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Chiral drugs hold a significant position within the contemporary pharmaceutical market, and the chiral catalysts play a crucial role in their synthesis. However, current chiral catalysts encounter challenges pertaining to their separation from products and the recycling process. The utilization of chiral recyclable catalysts not only reduces production costs but also aligns with the growing emphasis on environmentally-friendly chiral synthetic chemistry. These recyclable catalysts exhibit diverse carriers and distinct characteristics. Chemists employ the distinctive attributes of individual carriers to render them recyclable, thereby yielding time and cost savings. This review examines the asymmetric recyclable catalytic reactions reported between January 2017 and October 2023, categorizing them based on carrier solubility, and elucidates the loading techniques, catalytic impacts, recovery approaches, and recycling processes associated with these carriers.
Collapse
Affiliation(s)
- GuiPing Han
- Department of Pharmacy, Shaanxi University of Chinese Medicine Xianyang 712046 P. R. China
- Department of Chemistry, School of Pharmacy, Air Force Medical University Xi'an 710032 P. R. China
| | - WenQi Ren
- Department of Chemistry, School of Pharmacy, Air Force Medical University Xi'an 710032 P. R. China
| | - ShengYong Zhang
- Department of Chemistry, School of Pharmacy, Air Force Medical University Xi'an 710032 P. R. China
| | - ZhenYu Zuo
- Department of Pharmacy, Shaanxi University of Chinese Medicine Xianyang 712046 P. R. China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Air Force Medical University Xi'an 710032 P. R. China
| |
Collapse
|
2
|
Post-Modification of Copolymers Obtained by ATRP for an Application in Heterogeneous Asymmetric Salen Catalysis. Molecules 2022; 27:molecules27144654. [PMID: 35889526 PMCID: PMC9319095 DOI: 10.3390/molecules27144654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Copolymers are valuable supports for obtaining heterogeneous catalysts that allow their recycling and therefore substantial savings, particularly in the field of asymmetric catalysis. This contribution reports the use of two comonomers: Azido-3-propylmethacrylate (AZMA) bearing a reactive azide function was associated with 2-methoxyethyl methacrylate (MEMA), used as a spacer, for the ATRP synthesis of copolymers, and then post-functionalized with a propargyl chromium salen complex. The controlled homopolymerization of MEMA by ATRP was firstly described and proved to be more controlled in molar mass than that of AZMA for conversions up to 63%. The ATRP copolymerization of both monomers made it possible to control the molar masses and the composition, with nevertheless a slight increase in the dispersity (from 1.05 to 1.3) when the incorporation ratio of AZMA increased from 10 to 50 mol%. These copolymers were post-functionalized with chromium salen units by click chemistry and their activity was evaluated in the asymmetric ring opening of cyclohexene oxide with trimethylsilyl azide. At an equal catalytic ratio, a significant increase in enantioselectivity was obtained by using the copolymer containing the largest part of salen units, probably allowing, in this case, the more favorable bimetallic activation of both the engaged nucleophile and electrophile. Moreover, the catalytic polymer was recovered by simple filtration and re-engaged in subsequent catalytic runs, up to seven times, without loss of activity or selectivity.
Collapse
|
3
|
Nepal P, Kalapugama S, Shevlin M, Naber JR, Campeau LC, Pezzetta C, Carlone A, Cobley CJ, Bergens SH. Polycationic Rh–JosiPhos Polymers Supported on Phosphotungstic Acid/Al2O3 by Multiple Electrostatic Attractions. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prabin Nepal
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Alberta, Canada
| | - Suneth Kalapugama
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Alberta, Canada
| | - Michael Shevlin
- Process Research and Development, MRL, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - John R. Naber
- JRN - Process Research and Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Louis-Charles Campeau
- Process Research and Development, MRL, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Cristofer Pezzetta
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
| | - Armando Carlone
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Christopher J. Cobley
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
| | - Steven H. Bergens
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
4
|
Yuan YC, Abd El Sater M, Mellah M, Jaber N, David ORP, Schulz E. Enantiopure isothiourea@carbon-based support: stacking interactions for recycling a lewis base in asymmetric catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00646k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An enantiopure isothiourea (hyperBTM) was functionalized by a pyrene moiety via click chemistry; immobilized on reduced Graphene Oxide, this recyclable chiral organocatalyst promotes formal [3+2] cycloaddition of ammonium enolates with oxaziridines.
Collapse
Affiliation(s)
- Yu-Chao Yuan
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
- Institut Lavoisier, UMR 8180, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris Saclay, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Mariam Abd El Sater
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
- Laboratoire de Chimie Médicinale et des Produits Naturels, Université Libanaise, Faculté des Sciences (I) and PRASE-EDST, Hadath, Beyrouth, Lebanon
| | - Mohamed Mellah
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - Nada Jaber
- Laboratoire de Chimie Médicinale et des Produits Naturels, Université Libanaise, Faculté des Sciences (I) and PRASE-EDST, Hadath, Beyrouth, Lebanon
| | - Olivier R. P. David
- Institut Lavoisier, UMR 8180, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris Saclay, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Emmanuelle Schulz
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| |
Collapse
|