1
|
Hashem K, Krishnan R, Yang K, Anjali BA, Zhang Y, Jiang J. Computational design of metal hydrides on a defective metal-organic framework HKUST-1 for ethylene dimerization. Phys Chem Chem Phys 2024; 26:7109-7123. [PMID: 38348573 DOI: 10.1039/d3cp06257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Catalytic ethylene dimerization to 1-butene is a crucial reaction in the chemical industry, as 1-butene is used for the production of most common plastics (e.g., polyethylene). With well-defined tuneable structures and unsaturated active sites, defective metal-organic frameworks have recently emerged as potential catalysts for ethylene dimerization. Herein, we computationally design a series of metal hydrides on defective HKUST-1 namely H-M-DHKUST-1 (M: Co, Ni, Cu, Ru, Rh and Pd), and subsequently assess their catalytic activity for ethylene dimerization by density functional theory calculations. Due to the antiferromagnetic behavior of dimeric metal-based clusters, we comprehensively investigate all possible multiplicity states on H-M-DHKUST-1 and observe multiplicity crossing. The ground-state reaction barriers for four elementary steps (initiation, C-C coupling, β-hydride elimination and 1-butene desorption) are rationalized and C-C coupling is revealed to be the rate-determining step on H-Co-, H-Ni-, H-Ru-, H-Rh- and H-Pd-DHKUST-1. The energy barrier for β-hydride elimination is found to be the lowest on H-Ru- and H-Rh-DHKUST-1, attributed to the weak stability of agostic arrangement; however, the energy barrier for 1-butene desorption is the highest on H-Rh-DHKUST-1. Among the designed H-M-DHKUST-1, Co- and Ni-based ones are predicted to exhibit the best overall catalytic performance. The mechanistic insights from this study may facilitate the development of new MOFs toward efficient ethylene dimerization and other industrially important reactions.
Collapse
Affiliation(s)
- Karam Hashem
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pasek Road Jurong Island, 627833, Singapore
| | - Ramakrishna Krishnan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| | - Bai Amutha Anjali
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| | - Yugen Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pasek Road Jurong Island, 627833, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore.
| |
Collapse
|
2
|
Weiser J, Cui J, Dewhurst RD, Braunschweig H, Engels B, Fantuzzi F. Structure and bonding of proximity-enforced main-group dimers stabilized by a rigid naphthyridine diimine ligand. J Comput Chem 2023; 44:456-467. [PMID: 36054757 DOI: 10.1002/jcc.26994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13-15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.
Collapse
Affiliation(s)
- Jonas Weiser
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jingjing Cui
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,School of Chemistry and Forensic Science, University of Kent, Canterbury, UK
| |
Collapse
|
3
|
Ikemoto S, Muratsugu S, Koitaya T, Tsuji Y, Das M, Yoshizawa K, Glorius F, Tada M. Coordination-Induced Trigger for Activity: N-Heterocyclic Carbene-Decorated Ceria Catalysts Incorporating Cr and Rh with Activity Induction by Surface Adsorption Site Control. J Am Chem Soc 2023; 145:1497-1504. [PMID: 36511728 DOI: 10.1021/jacs.2c07290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A coordination-induced trigger for catalytic activity is proposed on an N-heterocyclic carbene (NHC)-decorated ceria catalyst incorporating Cr and Rh (ICy-r-Cr0.19Rh0.06CeOz). ICy-r-Cr0.19Rh0.06CeOz was prepared by grafting 1,3-dicyclohexylimidazol-2-ylidene (ICy) onto H2-reduced Cr0.19Rh0.06CeOz (r-Cr0.19Rh0.06CeOz) surfaces, which went on to exhibit substantial catalytic activity for the 1,4-arylation of cyclohexenone with phenylboronic acid, whereas r-Cr0.19Rh0.06CeOz without ICy was inactive. FT-IR, Rh K-edge XAFS, XPS, and photoluminescence spectroscopy showed that the ICy carbene-coordinated Rh nanoclusters were the key active species. The coordination-induced trigger for catalytic activity on the ICy-bearing Rh nanoclusters could not be attributed to electronic donation from ICy to the Rh nanoclusters. DFT calculations suggested that ICy controlled the adsorption sites of the phenyl group on the Rh nanocluster to promote the C-C bond formation of the phenyl group and cyclohexenone.
Collapse
Affiliation(s)
- Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takanori Koitaya
- Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Yuta Tsuji
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mowpriya Das
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149 Münster, Germany
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149 Münster, Germany
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Research Center for Materials Science (RCMS), Integrated Research Consortium on Chemical Sciences (IRCCS), and Institute for Advanced Study, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
4
|
Dobler L, Oliveira RR. Automated Search For The Low-lying Energy Isomers of Rhamnolipids and Related Organometallic Complexes. Chemphyschem 2022; 23:e202200111. [PMID: 35588462 DOI: 10.1002/cphc.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/19/2022] [Indexed: 11/10/2022]
Abstract
Rhamnolipids (RMLs) are a widely studied biosurfactant due to their high biodegradability and environmentally friendly pro duction. However, the knowledge of the structure-property relationship of RMLs is imperative for the design of highly efficient applications. Aiming to a better understanding of it at a molecular level, we performed an automated search for low energy structures of the most abundant RMLs, namely, Rha-C 10 , Rha-C 10 -C 10 , Rha-Rha-C 10 and Rha-Rha-C 10 -C 10 and their respective C 2 -congeners. Besides that, selected neutral metal complexes were also considered. We found that several low-energy congeners have internal hydrogen bonds. Moreover, geometries in "closed" conformation were always more stable than "open" ones. Fi nally, the energy differences between open and closed conformations of K + , Ni 2 + , Cu 2 + and Zn 2 + complexes were found to be 23.5 kcal mol -1 , 62.8 kcal mol -1 , 24.3 kcal mol -1 and 41.6 kcal mol -1 , respectively, indicating a huge structural reorganization after the complex formation.
Collapse
Affiliation(s)
- Leticia Dobler
- Universidade Federal do Rio de Janeiro, Chemistry Institute, BRAZIL
| | - Ricardo Rodrigues Oliveira
- Universidade Federal do Rio de Janeiro, Physical Chemistry, Av. Athos da Silveira Ramos, Technological Center, Block A, 304, University City, 21941-590, Rio de Janeiro, BRAZIL
| |
Collapse
|
5
|
Vitillo JG, Cramer CJ, Gagliardi L. Multireference Methods are Realistic and Useful Tools for Modeling Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jenny G. Vitillo
- Department of Science and High Technology and INSTM Università degli Studi dell'Insubria Via Valleggio 9 I-22100 Como Italy
| | - Christopher J. Cramer
- Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook Illinois 60602 United States
| | - Laura Gagliardi
- Department of Chemistry Pritzker School of Molecular Engineering James Franck Institute University of Chicago Chicago Illinois 60637 United States
| |
Collapse
|
6
|
Francisco MAS, Fantuzzi F, Cardozo TM, Esteves PM, Engels B, Oliveira RR. Taming the Antiferromagnetic Beast: Computational Design of Ultrashort Mn-Mn Bonds Stabilized by N-Heterocyclic Carbenes. Chemistry 2021; 27:12126-12136. [PMID: 34114702 PMCID: PMC8456913 DOI: 10.1002/chem.202101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 12/26/2022]
Abstract
The development of complexes featuring low-valent, multiply bonded metal centers is an exciting field with several potential applications. In this work, we describe the design principles and extensive computational investigation of new organometallic platforms featuring the elusive manganese-manganese bond stabilized by experimentally realized N-heterocyclic carbenes (NHCs). By using DFT computations benchmarked against multireference calculations, as well as MO- and VB-based bonding analyses, we could disentangle the various electronic and structural effects contributing to the thermodynamic and kinetic stability, as well as the experimental feasibility, of the systems. In particular, we explored the nature of the metal-carbene interaction and the role of the ancillary η6 coordination to the generation of Mn2 systems featuring ultrashort metal-metal bonds, closed-shell singlet multiplicities, and positive adiabatic singlet-triplet gaps. Our analysis identifies two distinct classes of viable synthetic targets, whose electrostructural properties are thoroughly investigated.
Collapse
Affiliation(s)
- Marcos A. S. Francisco
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroAv. Athos da Silveira Ramos 14921941909Rio de JaneiroBrazil
| | - Felipe Fantuzzi
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Thiago M. Cardozo
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroAv. Athos da Silveira Ramos 14921941909Rio de JaneiroBrazil
| | - Pierre M. Esteves
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroAv. Athos da Silveira Ramos 14921941909Rio de JaneiroBrazil
| | - Bernd Engels
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
| | - Ricardo R. Oliveira
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroAv. Athos da Silveira Ramos 14921941909Rio de JaneiroBrazil
| |
Collapse
|