1
|
Dutta S, Gu BS, Lee IS. Synthesis and Prospects of Holey Two-dimensional Platinum-group Metals in Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202312656. [PMID: 37702372 DOI: 10.1002/anie.202312656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Advanced electrocatalysts can enable the widespread implementation of clean energy technologies. This paper reviews an emerging class of electrocatalytic materials comprising holey two-dimensional free-standing Pt-group metal (h-2D-PGM) nanosheets, which are categorically challenging to synthesize but inherently rich in all the qualities necessary to counter the kinetic and thermodynamic challenges of an electrochemical conversion process with high catalytic efficiency and stability. Although the 2D anisotropic growth of typical nonlayered metal crystals has succeeded and partly improved their atom-utilization efficiency, regularly distributed in-planar porosity can further optimize three critical factors that govern efficient electrocatalysis process: mass diffusion, electron transfer, and surface reactivity. However, producing such advanced morphological features within h-2D-PGMs is difficult unless they are specially engineered using approaches such as templating or kinetic ramification during 2D growth or controlled etching of preformed 2D-PGM solids. Therefore, this review highlighting the successful fabrication of various porous PGM nanosheets and their electrocatalytic benefits involving smart nanoscale features could inspire next-generation scientific and technological innovations toward securing a sustainable energy future.
Collapse
Affiliation(s)
- Soumen Dutta
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Byeong Su Gu
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University Seoul 03722 (South Korea)
| |
Collapse
|
2
|
Yang X, Li X, Bu S, Wan T, Xiang D, Ye L, Sun Z, Wang K, Zhu M, Li P. Bismuth Incorporation in Palladium Hydride for the Electrocatalytic Ethanol Oxidation with Enhanced CO Tolerance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41560-41568. [PMID: 37608619 DOI: 10.1021/acsami.3c08885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Introducing nonmetal and oxophilic metal into palladium (Pd)-based catalysts is beneficial for boosting electrocatalysis, especially regarding the improvement of mass activity (MA) and CO tolerance. Herein, the stable bismuth-doped palladium hydride (Bi/PdH) networks have been successfully fabricated through a simple one-step method. The intercalation of interstitial H atoms expands the lattice of Pd, and the doping of oxophilic metal Bi restrains the adsorption of poisonous intermediates on the surface of Pd, thereby improving the activity and durability of the as-prepared catalysts in the ethanol oxidation reaction (EOR). The obtained Bi/PdH networks manifest a remarkable MA of 8.51 A·mgPd-1, which is 11.18 times higher than that of commercial Pd/C (0.76 A·mgPd-1). The CO-stripping analysis results indicate that Bi doping can significantly prohibit CO adsorption on the surface of the Bi/PdH networks. The density functional theory (DFT) calculations also reveal that Bi doping enhances the OH* adsorption on the catalyst surface and mitigates the interaction between Pd and CO* intermediates, providing deeper insights into the origin of the enhanced EOR activity and CO tolerance. This work describes an impactful path for producing high-performance and durable PdH-based nanocatalysts.
Collapse
Affiliation(s)
- Xianlong Yang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Xinghao Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Shu Bu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Tingting Wan
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Dong Xiang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Lina Ye
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Zhenjie Sun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Kun Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
3
|
Guo K, Xu D, Xu L, Li Y, Tang Y. Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications. MATERIALS HORIZONS 2023; 10:1234-1263. [PMID: 36723011 DOI: 10.1039/d2mh01408d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inorganic nanodendrites (NDs) have become a kind of advanced nanomaterials with broad application prospects because of their unique branched architecture. The structural characteristics of nanodendrites include highly branched morphology, abundant tips/edges and high-index crystal planes, and a high atomic utilization rate, which give them great potential for usage in the fields of electrocatalysis, sensing, and therapeutics. Therefore, the rational design and controlled synthesis of inorganic (especially noble metals) nanodendrites have attracted widespread attention nowadays. The development of synthesis strategies and characterization methodology provides unprecedented opportunities for the preparation of abundant nanodendrites with interesting crystallographic structures, morphologies, and application performances. In this review, we systematically summarize the formation mechanisms of noble metal nanodendrites reported in recent years, with a special focus on surfactant-mediated mechanisms. Some typical examples obtained by innovative synthetic methods are then highlighted and recent advances in the application of noble metal nanodendrites are carefully discussed. Finally, we conclude and present the prospects for the future development of nanodendrites. This review helps to deeply understand the synthesis and application of noble metal nanodendrites and may provide some inspiration to develop novel functional nanomaterials (especially electrocatalysts) with enhanced performance.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
4
|
Qin Y, Huang H, Yu W, Zhang H, Li Z, Wang Z, Lai J, Wang L, Feng S. Porous PdWM (M = Nb, Mo and Ta) Trimetallene for High C1 Selectivity in Alkaline Ethanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103722. [PMID: 34951154 PMCID: PMC8844492 DOI: 10.1002/advs.202103722] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/28/2021] [Indexed: 05/20/2023]
Abstract
Direct ethanol fuel cells are among the most efficient and environmentally friendly energy-conversion devices and have been widely focused. The ethanol oxidation reaction (EOR) is a multielectron process with slow kinetics. The large amount of by-product generated by incomplete oxidation greatly reduces the efficiency of energy conversion through the EOR. In this study, a novel type of trimetallene called porous PdWM (M = Nb, Mo and Ta) is synthesized by a facile method. The mass activity (15.6 A mgPd -1 ) and C1 selectivity (55.5%) of Pd50 W27 Nb23 /C trimetallene, obtained after optimizing the compositions and proportions of porous PdWM, outperform those of commercial Pt/C (1.3 A mgPt -1 , 5.9%), Pd/C (5.0 A mgPd -1 , 7.2%), and Pd97 W3 /C bimetallene (9.5 A mgPd -1 , 14.1%). The mechanism by which Pd50 W27 Nb23 /C enhances the EOR performance is evaluated by in situ Fourier transform infrared spectroscopy and density functional theory calculations. It is found that W and Nb enhance the adsorption of CH3 CH2 OH and oxophilic high-valence Nb accelerates the subsequent oxidation of CO and CHx species. Moreover, Nb promotes the cleavage of CC bonds and increases the C1 selectivity. Pd60 W28 Mo12 /C and Pd64 W27 Ta9 /C trimetallene synthesized by the same method also exhibit excellent EOR performance.
Collapse
Affiliation(s)
- Yingnan Qin
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Hao Huang
- School of Sustainable Energy Materials and ScienceJinhua Advanced Research InstituteJinhua321000P. R. China
| | - Wenhao Yu
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Haonan Zhang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety ProtectionCollege of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Zhenjiang Li
- College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Zuochao Wang
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Jianping Lai
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Lei Wang
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety ProtectionCollege of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Shouhua Feng
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| |
Collapse
|
5
|
Zheng Y, Zhang G, Ma Y, Kong Y, Liu F, Liu M. Kinetics-Controlled Synthesis of Gold-Silver Nanosheets with Abundant in-Plane Cracking and Their Trimetallic Derivatives for Plasmon-Enhanced Catalysis. CrystEngComm 2022. [DOI: 10.1039/d1ce01505b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled synthesis of two-dimensional noble metal nanomaterials with in-plane branching morphology has been of great research interest recently, which yet achieves limited success for AuAg-based nanocrystals. Herein, we report the...
Collapse
|
6
|
Zheng Y, Wang X, Kong Y, Ma Y. Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00975c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this highlight article, the recent progress on the preparation and application of multimetallic alloy nanocrystals with 2D nanostructures is systematically reviewed, as well as perspectives on future challenges and opportunities.
Collapse
Affiliation(s)
- Yiqun Zheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiping Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuhan Kong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|